About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: PFAM:PF00017 (151 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
LIG_SH2_GRB2LIG_SH2_IALIG_SH2_IB
LIG_SH2_ICLIG_SH2_IDLIG_SH2_IE
LIG_SH2_IIALIG_SH2_IIBLIG_SH2_III
LIG_SH2_SRCLIG_SH2_STAT5LIG_TYR_ITAM
LIG_TYR_ITIMLIG_TYR_ITSM


ProteinStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

LIG_SH2_GRB2 - GRB2-like Src Homology 2 (SH2) domains binding motif.
IRS1_RAT895898BinaryPhysicochemical compatibilityPhosphorylation of Y895 in the SH2-binding motif of Insulin receptor substrate 1 (Irs1) induces binding to the Growth factor receptor-bound protein 2 (Grb2) protein.
details
A4_HUMAN757760CumulativeRheostaticWhile phosphorylation of Y757 in the SH2-binding motif of Amyloid beta A4 protein (APP) induces binding to Growth factor receptor-bound protein 2 (GRB2), additional phosphorylation of T743 further increases the strength of the interaction.
details
A4_HUMAN757760SpecificityAltered binding specificityPhosphorylation of Y757 in APP (Amyloid beta A4 protein (APP)) switches its specificity from PTB domain containing proteins, like Amyloid beta A4 precursor protein-binding family B member 1 (APBB1), which is involved in trafficking and processing of APP, to SH2 domain containing proteins, such as Growth factor receptor-bound protein 2 (GRB2).
details
LAT_MOUSE175178BinaryPhysicochemical compatibilityPhosphorylation of Y175 in the SH2-binding motif of Linker for activation of T-cells family member 1 (Lat) induces binding to the Growth factor receptor-bound protein 2 (Grb2) protein.
details
LAT_MOUSE195198BinaryPhysicochemical compatibilityPhosphorylation of Y195 in the SH2-binding motif of Linker for activation of T-cells family member 1 (Lat) induces binding to the Growth factor receptor-bound protein 2 (Grb2) protein.
details
LAT_MOUSE235238BinaryPhysicochemical compatibilityPhosphorylation of Y235 in the SH2-binding motif of Linker for activation of T-cells family member 1 (Lat) induces binding to the Growth factor receptor-bound protein 2 (Grb2) protein.
details
ERBB3_HUMAN12621265BinaryPhysicochemical compatibilityPhosphorylation of Y1262 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to Growth factor receptor-bound protein 2 (GRB2).
details

LIG_SH2_IA -
IL2RB_HUMAN409428BinaryPhysicochemical compatibilityPhosphorylation of Y418 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Tyrosine-protein kinase Lck (LCK) protein.
details
EPHA3_HUMAN597606BinaryPhysicochemical compatibilityPhosphorylation of Y602 in the SH2-binding motif of Ephrin type-A receptor 3 (EPHA3) induces binding to the Cytoplasmic protein NCK1 (NCK1) protein.
details
FCERG_HUMAN7579BinaryPhysicochemical compatibilityPhosphorylation of Y76 in the SH2-binding motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces binding to the Tyrosine-protein kinase SYK (SYK) protein.
details
FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
NTRK2_HUMAN714730BinaryPhysicochemical compatibilityPhosphorylation of Y727 in the SH2-binding motif of BDNF/NT-3 growth factors receptor (NTRK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
LCP2_MOUSE143148BinaryPhysicochemical compatibilityPhosphorylation of Y145 in the SH2-binding motif of Lymphocyte cytosolic protein 2 (Lcp2) induces binding to the Tyrosine-protein kinase ITK/TSK (Itk) protein.
details
GBLP_RAT241250BinaryPhysicochemical compatibilityPhosphorylation of Y246 in the SH2-binding motif of Guanine nucleotide-binding protein subunit beta-2-like 1 (Gnb2l1) induces binding to the Proto-oncogene tyrosine-protein kinase Src (SRC) protein.
details
DCD_HUMAN1525BinaryPhysicochemical compatibilityPhosphorylation of Y20 in the SH2-binding motif of Dermcidin (DCD) induces binding to the Cytoplasmic protein NCK1 (NCK1) protein.
details
DAB1_MOUSE212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE185188BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). Splice variants 2 and 3 (only containing one of the YQxI motifs, i.e. Y185 and Y198) exhibit decreased tyrosine phosphorylation, suggesting both motifs are required for full activation of Dab1. Dab1 is likely to recruit Neuronal proto-oncogene tyrosine-protein kinase Src (Src) via these two YQxI motifs, which subsequently phosphorylates adjacent YxVP motifs (here). This was also suggested for Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1) and Suppressor of cytokine signaling 2 (Socs2). Gao et al. (2012) (here) suggests that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains allows a fine-tuning role for Dab1 splicing in the intricate series of events that underlie neuronal migration (See also Katyal & Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
DAB1_MOUSE185188BinaryPhysicochemical compatibilityPhosphorylation of Y185 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details

LIG_SH2_IB -
DAB1_HUMAN211230BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (DAB1) induces binding to the Adapter molecule crk (CRK) protein.
details
NTRK1_HUMAN783796BinaryPhysicochemical compatibilityPhosphorylation of Y791 in the SH2-binding motif of High affinity nerve growth factor receptor (NTRK1) induces binding to the Megakaryocyte-associated tyrosine-protein kinase (MATK) protein.
details
CBL_HUMAN770780BinaryPhysicochemical compatibilityPhosphorylation of Y774 in the SH2-binding motif of E3 ubiquitin-protein ligase CBL (CBL) induces binding to the Adapter molecule crk (CRK) protein.
details
DOK1_HUMAN447454BinaryPhysicochemical compatibilityPhosphorylation of Y449 in the SH2-binding motif of Docking protein 1 (DOK1) induces binding to the SH2 domain-containing protein 1A (SH2D1A) protein.
details
SLAF1_HUMAN276286BinaryPhysicochemical compatibilityPhosphorylation of Y281 in the SH2-binding motif of Signaling lymphocytic activation molecule (SLAMF1) induces binding to the SH2 domain-containing protein 1A (SH2D1A) protein.
details
SLAF1_HUMAN273286BinaryPhysicochemical compatibilityPhosphorylation of Y281 in the SH2-binding motif of Signaling lymphocytic activation molecule (SLAMF1) induces binding to the SH2 domain-containing protein 1B (Sh2d1b) protein.
details
FAK2_HUMAN394410BinaryPhysicochemical compatibilityPhosphorylation of Y402 in the SH2-binding motif of Protein-tyrosine kinase 2-beta (PTK2B) induces binding to the Megakaryocyte-associated tyrosine-protein kinase (MATK) protein.
details
BCAR1_HUMAN358368BinaryPhysicochemical compatibilityPhosphorylation of Y362 in the SH2-binding motif of Breast cancer anti-estrogen resistance protein 1 (BCAR1) induces binding to the Adapter molecule crk (CRK) protein.
details
EPHB2_MOUSE601610BinaryPhysicochemical compatibilityPhosphorylation of Y604 in the SH2-binding motif of Ephrin type-B receptor 2 (Ephb2) induces binding to the Adapter molecule crk (CRK) protein.
details
EPHB2_MOUSE606620BinaryPhysicochemical compatibilityPhosphorylation of Y610 in the SH2-binding motif of Ephrin type-B receptor 2 (Ephb2) induces binding to the Adapter molecule crk (CRK) protein.
details

LIG_SH2_IC -
A9UF02_HUMAN174180BinaryPhysicochemical compatibilityPhosphorylation of Y177 in the SH2-binding motif of BCR/ABL fusion induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
PDPK1_HUMAN376379BinaryPhysicochemical compatibilityPhosphorylation of Y376 in the SH2-binding motif of 3-phosphoinositide-dependent protein kinase 1 (PDPK1) induces binding to the Tensin-1 (TNS1) protein.
details
LAT_HUMAN198203BinaryPhysicochemical compatibilityPhosphorylation of Y200 in the SH2-binding motif of Linker for activation of T-cells family member 1 (LAT) induces binding to the GRB2-related adaptor protein 2 (Grap2) protein.
details
LAT_HUMAN218223BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Linker for activation of T-cells family member 1 (LAT) induces binding to the GRB2-related adaptor protein 2 (Grap2) protein.
details
DOK2_HUMAN402405BinaryPhysicochemical compatibilityPhosphorylation of Y402 in the SH2-binding motif of Docking protein 2 (DOK2) induces binding to the Tensin-1 (TNS1) protein.
details
EGFR_HUMAN10921100BinaryPhysicochemical compatibilityPhosphorylation of Y1092 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
ERBB2_HUMAN11351144BinaryPhysicochemical compatibilityPhosphorylation of Y1139 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-2 (ERBB2) induces binding to the Growth factor receptor-bound protein 7 (GRB7) protein.
details
MET_HUMAN13511360BinaryPhysicochemical compatibilityPhosphorylation of Y1356 in the SH2-binding motif of Hepatocyte growth factor receptor (MET) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
SHC1_HUMAN423435BinaryPhysicochemical compatibilityPhosphorylation of Y427 in the SH2-binding motif of SHC-transforming protein 1 (SHC1) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMAN191200BinaryPhysicochemical compatibilityPhosphorylation of Y196 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMAN301310BinaryPhysicochemical compatibilityPhosphorylation of Y306 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMAN345355BinaryPhysicochemical compatibilityPhosphorylation of Y349 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMAN385395BinaryPhysicochemical compatibilityPhosphorylation of Y392 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details

LIG_SH2_ID -
EGFR_HUMAN10081024BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the SH2 domain-containing protein 3C (SH2D3C) protein.
details
EGFR_HUMAN10081024BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the SH2 domain-containing protein 3A (SH2D3A) protein.
details
ERBB2_HUMAN11311147BinaryPhysicochemical compatibilityPhosphorylation of Y1139 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-2 (ERBB2) induces binding to the Breast cancer anti-estrogen resistance protein 3 (BCAR3) protein.
details
ERBB2_HUMAN10151031BinaryPhysicochemical compatibilityPhosphorylation of Y1023 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-2 (ERBB2) induces binding to the SH2 domain-containing protein 3A (SH2D3A) protein.
details
ERBB3_HUMAN860876BinaryPhysicochemical compatibilityPhosphorylation of Y868 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Breast cancer anti-estrogen resistance protein 3 (BCAR3) protein.
details
ERBB3_HUMAN12681284BinaryPhysicochemical compatibilityPhosphorylation of Y1276 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Breast cancer anti-estrogen resistance protein 3 (BCAR3) protein.
details
ERBB3_HUMAN12811297BinaryPhysicochemical compatibilityPhosphorylation of Y1289 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Breast cancer anti-estrogen resistance protein 3 (BCAR3) protein.
details
ERBB3_HUMAN13201336BinaryPhysicochemical compatibilityPhosphorylation of Y1328 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Breast cancer anti-estrogen resistance protein 3 (BCAR3) protein.
details
ERBB3_HUMAN13201336BinaryPhysicochemical compatibilityPhosphorylation of Y1328 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the SH2 domain-containing protein 3A (SH2D3A) protein.
details

LIG_SH2_IE -
EGFR_HUMAN10081024BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the Tyrosine-protein kinase JAK2 (JAK2) protein.
details
ERBB2_HUMAN10151031BinaryPhysicochemical compatibilityPhosphorylation of Y1023 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-2 (ERBB2) induces binding to the Tyrosine-protein kinase JAK2 (JAK2) protein.
details
ERBB3_HUMAN13201336BinaryPhysicochemical compatibilityPhosphorylation of Y1328 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Tyrosine-protein kinase JAK2 (JAK2) protein.
details
ERBB3_HUMAN12681284BinaryPhysicochemical compatibilityPhosphorylation of Y1276 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Tyrosine-protein kinase JAK2 (JAK2) protein.
details

LIG_SH2_IIA -
PGFRB_HUMAN751755BinaryPhysicochemical compatibilityPhosphorylation of Y751 in the SH2-binding motif of Platelet-derived growth factor receptor beta (PDGFRB) induces binding to the Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) protein.
details
PGFRB_HUMAN10181029BinaryPhysicochemical compatibilityPhosphorylation of Y1021 in the SH2-binding motif of Platelet-derived growth factor receptor beta (PDGFRB) induces binding to the 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1) protein.
details
GHR_HUMAN591600BinaryPhysicochemical compatibilityPhosphorylation of Y595 in the SH2-binding motif of Growth hormone receptor (GHR) induces binding to the Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) protein.
details
IL4RA_HUMAN706721BinaryPhysicochemical compatibilityPhosphorylation of Y713 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) protein.
details
FRS2_HUMAN431440BinaryPhysicochemical compatibilityPhosphorylation of Y436 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) protein.
details
FRS2_HUMAN465475BinaryPhysicochemical compatibilityPhosphorylation of Y471 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) protein.
details
CSF3R_HUMAN747758BinaryPhysicochemical compatibilityPhosphorylation of Y752 in the SH2-binding motif of Granulocyte colony-stimulating factor receptor (CSF3R) induces binding to the Suppressor of cytokine signaling 3 (SOCS3) protein.
details
IL6RB_MOUSE750764BinaryPhysicochemical compatibilityPhosphorylation of Y757 in the SH2-binding motif of Interleukin-6 receptor subunit beta (Il6st) induces binding to the Suppressor of cytokine signaling 3 (Socs3) protein.
details
IL4RA_HUMAN706721BinaryPhysicochemical compatibilityPhosphorylation of Y713 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Tyrosine-protein phosphatase non-receptor type 6 (PTPN6) protein.
details
ERBB4_HUMAN10561059BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
SHIP1_HUMAN918921BinaryPre‑translationalAlternative splicing partially removes the SH2-binding motif of Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (Inpp5d), partially inhibiting binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1).
details
SHIP1_HUMAN918921BinaryPre‑translationalAlternative splicing partially removes the SH2-binding motif of Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 (Inpp5d), partially inhibiting binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1).
details
ERBB4_HUMAN10561059BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details

LIG_SH2_IIB -
JAK2_HUMAN804823BinaryPhysicochemical compatibilityPhosphorylation of Y813 in the SH2-binding motif of Tyrosine-protein kinase JAK2 (JAK2) induces binding to the SH2B adapter protein 1 (SH2B1) protein.
details
NTRK1_HUMAN782796BinaryPhysicochemical compatibilityPhosphorylation of Y791 in the SH2-binding motif of High affinity nerve growth factor receptor (NTRK1) induces binding to the SHC-transforming protein 1 (SHC1) protein.
details
RET_HUMAN976985BinaryPhysicochemical compatibilityPhosphorylation of Y981 in the SH2-binding motif of Proto-oncogene tyrosine-protein kinase receptor Ret (RET) induces binding to the SH2B adapter protein 1 (SH2B1) protein.
details
IL2RB_HUMAN361370BinaryPhysicochemical compatibilityPhosphorylation of Y364 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the SHC-transforming protein 1 (SHC1) protein.
details
VAV_HUMAN165180BinaryPhysicochemical compatibilityPhosphorylation of Y174 in the SH2-binding motif of Proto-oncogene vav (VAV1) induces binding to the SH2 domain-containing adapter protein B (SHB) protein.
details
PGFRA_HUMAN705729BinaryPhysicochemical compatibilityPhosphorylation of Y720 in the SH2-binding motif of Platelet-derived growth factor receptor alpha (PDGFRA) induces binding to the SH2 domain-containing adapter protein F (SHF) protein.
details
IL4RA_HUMAN706721BinaryPhysicochemical compatibilityPhosphorylation of Y713 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the SHC-transforming protein 1 (SHC1) protein.
details
IL4RA_HUMAN706721BinaryPhysicochemical compatibilityPhosphorylation of Y713 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D) protein.
details
M4K1_HUMAN372391BinaryPhysicochemical compatibilityPhosphorylation of Y381 in the SH2-binding motif of Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) induces binding to the B-cell linker protein (BLNK) protein.
details
DOK1_HUMAN203206BinaryPhysicochemical compatibilityPhosphorylation of Y203 in the SH2-binding motif of Docking protein 1 (DOK1) induces binding to the Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D) protein.
details
LCP2_HUMAN105118BinaryPhysicochemical compatibilityPhosphorylation of Y113 in the SH2-binding motif of Lymphocyte cytosolic protein 2 (LCP2) induces binding to the SH2 domain-containing adapter protein B (SHB) protein.
details
LCP2_HUMAN120133BinaryPhysicochemical compatibilityPhosphorylation of Y128 in the SH2-binding motif of Lymphocyte cytosolic protein 2 (LCP2) induces binding to the SH2 domain-containing adapter protein B (SHB) protein.
details
LCP2_HUMAN137150BinaryPhysicochemical compatibilityPhosphorylation of Y145 in the SH2-binding motif of Lymphocyte cytosolic protein 2 (LCP2) induces binding to the SH2 domain-containing adapter protein B (SHB) protein.
details

LIG_SH2_III -
EGFR_HUMAN10081024BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
ERBB2_HUMAN11311147BinaryPhysicochemical compatibilityPhosphorylation of Y1139 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-2 (ERBB2) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
GHR_HUMAN428444BinaryPhysicochemical compatibilityPhosphorylation of Y436 in the SH2-binding motif of Growth hormone receptor (GHR) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
IL2RB_HUMAN531540BinaryPhysicochemical compatibilityPhosphorylation of Y536 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Signal transducer and activator of transcription 5A (STAT5A) protein.
details
IL2RB_HUMAN528544BinaryPhysicochemical compatibilityPhosphorylation of Y536 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
INGR1_HUMAN457461BinaryPhysicochemical compatibilityPhosphorylation of Y457 in the SH2-binding motif of Interferon gamma receptor 1 (IFNGR1) induces binding to the Signal transducer and activator of transcription 1-alpha/beta (STAT1) protein.
details
EPOR_HUMAN360376BinaryPhysicochemical compatibilityPhosphorylation of Y368 in the SH2-binding motif of Erythropoietin receptor (EPOR) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
EPOR_HUMAN418434BinaryPhysicochemical compatibilityPhosphorylation of Y426 in the SH2-binding motif of Erythropoietin receptor (EPOR) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
EPOR_HUMAN496508BinaryPhysicochemical compatibilityPhosphorylation of Y504 in the SH2-binding motif of Erythropoietin receptor (EPOR) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
ERBB3_HUMAN13201336BinaryPhysicochemical compatibilityPhosphorylation of Y1328 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
IL4RA_HUMAN566585BinaryPhysicochemical compatibilityPhosphorylation of Y575 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
IL4RA_HUMAN594613BinaryPhysicochemical compatibilityPhosphorylation of Y603 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
IL4RA_HUMAN622641BinaryPhysicochemical compatibilityPhosphorylation of Y631 in the SH2-binding motif of Interleukin-4 receptor subunit alpha (IL4R) induces binding to the Signal transducer and activator of transcription 6 (STAT6) protein.
details
JAK2_MOUSE804820BinaryPhysicochemical compatibilityPhosphorylation of Y813 in the SH2-binding motif of Tyrosine-protein kinase JAK2 (Jak2) induces binding to the Signal transducer and activator of transcription 5B (Stat5b) protein.
details
STA5A_HUMAN686702BinaryPhysicochemical compatibilityPhosphorylation of Y694 in the SH2-binding motif of Signal transducer and activator of transcription 5A (STAT5A) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details
LEPR_MOUSE11291148BinaryPhysicochemical compatibilityPhosphorylation of Y1138 in the SH2-binding motif of Leptin receptor (Lepr) induces binding to the Signal transducer and activator of transcription 3 (STAT3) protein.
details

LIG_SH2_SRC - Src-family Src Homology 2 (SH2) domains binding motif.
SRC_HUMAN530533BinaryPhysicochemical compatibilityPhosphorylation of Y530 in the SH2-binding motif of Proto-oncogene tyrosine-protein kinase Src (SRC) induces an intramolecular interaction with the SH2 domain of Proto-oncogene tyrosine-protein kinase Src (SRC) resulting in inhibition of its activity and preventing intermolecular interactions of its SH2 domain.
details
DAG1_HUMAN892895SpecificityAltered binding specificityAdhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by Src kinase (Proto-oncogene tyrosine-protein kinase Src (SRC)) switches the specificity of DAG1 from the WW domain containing cytoskeletal linker Dystrophin (DMD) to the SH2 domain containing Tyrosine-protein kinase Fyn (FYN).
details
DAG1_HUMAN892895SpecificityAltered binding specificityAdhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by c-Src (SRC) switches the specificity of DAG1 from WW domain containing proteins like Utrophin (UTRN) to SH2 domain containing proteins like Tyrosine-protein kinase CSK (CSK).
details
DAB1_MOUSE198201BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). Splice variants 2 and 3 (only containing one of the YQxI motifs, i.e. Y185 and Y198) exhibit decreased tyrosine phosphorylation, suggesting both motifs are required for full activation of Dab1. Dab1 is likely to recruit Neuronal proto-oncogene tyrosine-protein kinase Src (Src) via these two YQxI motifs, which subsequently phosphorylates adjacent YxVP motifs (here). This was also suggested for Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1) and Suppressor of cytokine signaling 2 (Socs2). Gao et al. (2012) (here) suggests that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains allows a fine-tuning role for Dab1 splicing in the intricate series of events that underlie neuronal migration (See also Katyal & Godbout (2004) (here) and Gao et al. (2010) (here)).
details
DAB1_MOUSE198201BinaryPhysicochemical compatibilityPhosphorylation of Y198 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details
EGFR_HUMAN10161019BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1).
details
EGFR_HUMAN11251128BinaryPhysicochemical compatibilityPhosphorylation of Y1125 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Adapter molecule crk (CRK).
details
EGFR_HUMAN10161019BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Cytoplasmic protein NCK1 (NCK1).
details
FAK1_HUMAN397400BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details

LIG_SH2_STAT5 - STAT5 Src Homology 2 (SH2) domain binding motif.
LAT_HUMAN161164BinaryPhysicochemical compatibilityPhosphorylation of Y161 in the SH2-binding motif of Linker for activation of T-cells family member 1 (LAT) induces binding to the 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1) protein.
details
CTLA4_MOUSE201204SpecificityAltered binding specificityDephosphorylation of Y201 of Cytotoxic T-lymphocyte protein 4 (Ctla4) switches the specificity of Ctla4 from SH2 domain-containing proteins like Tyrosine-protein phosphatase non-receptor type 11 (Ptpn11) to the AP-2 complex mu subunit (AP-2 complex subunit mu (Ap2m1)), thereby switching from inhibitory signal transmission and negative regulation of T cell responses to internalization and inactivation of Ctla4.
details
ERBB4_HUMAN10561059SpecificityAltered binding specificityPhosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
INSR_HUMAN13611364SpecificityDomain hidingPIP3 (1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate), a product of PI3-kinase, binds to the SH2 domains of PI3K (Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1)) and thereby blocks its interaction with tyrosine-phosphorylated SH2 motif containing proteins.
details
STA5A_HUMAN694697BinaryPre‑translationalAlternative splicing removes the regulatory Y694 residue of Signal transducer and activator of transcription 5A (STAT5A). The phosphorylation of Y694 by Proto-oncogene tyrosine-protein kinase Src (SRC) has been shown to be essential for DNA binding. This event acts as an important regulatory mechanism (See Clark et al. (2005) (here) and Okutani et al. (2001) (here)). The exact function of Y694 remains uncertain as is binding to STAT5 in dimer. The STAT5A-DeltaE18 does not enter nucleus upon PRLR stimulation.
details
PRLR_HUMAN342345BinaryPre‑translationalAlternative Splicing removes the degron motif of Prolactin receptor (PRLR), abrogating binding to Signal transducer and activator of transcription 5A (STAT5A). The PRLR S1a (Isoform Short form 1a of Prolactin receptor (PRLR)) and S1b and (Isoform Short form 1b of Prolactin receptor (PRLR)) isoforms were unable to mediate the transcriptional activation of the beta-casein promoter via the JAK-STAT5 pathway. Therefore these two splice variants act as dominant negatives on the full-length version LF (Isoform 1 of Prolactin receptor (PRLR)). Another study showed that different splice variants of heterodimers (e.g. LF/S1a, LF/S1b) that were able to induce JAK2 phosphorylation but not further signalling events due to lack of STAT recruitment (Qazi et al. (2006) (here)).
details
GAB1_HUMAN472475BinaryPhysicochemical compatibilityPhosphorylation of Y472 in the SH2-binding motif of GRB2-associated-binding protein 1 (GAB1) induces binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1).
details
GAB1_HUMAN447450BinaryPhysicochemical compatibilityPhosphorylation of Y447 in the SH2-binding motif of GRB2-associated-binding protein 1 (GAB1) induces binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1).
details

LIG_TYR_ITAM - ITAM (immunoreceptor tyrosine-based activatory motif). ITAM consists of partially conserved short sequence of amino acid found in the cytoplasmatic tail of antigen and Fc receptors.
CD3E_HUMAN185202SpecificityAltered binding specificityPhosphorylation of T-cell surface glycoprotein CD3 epsilon chain (CD3E) by Lck (Tyrosine-protein kinase Lck (LCK)) during T cell activation switches the specificity of CD3E from SH3 domain containing proteins like Epidermal growth factor receptor kinase substrate 8-like protein 1 (EPS8L1) to SH2 domain containing proteins like Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3Z_HUMAN6986Avidity‑sensingPhosphorylation of Y72 and Y83 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3Z_HUMAN6986Avidity‑sensingPhosphorylation of Y72 and Y83 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD79A_MOUSE179196Avidity‑sensingPhosphorylation of Y182 and Y193 in the ITAM motif of B-cell antigen receptor complex-associated protein alpha chain (Cd79a) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (Syk). Maximal Syk activation requires both Syk SH2 domains and phosphorylation of both ITAM tyrosine residues.
details
CD79A_MOUSE179196Avidity‑sensingPhosphorylation of Y182 and Y193 in the ITAM motif of B-cell antigen receptor complex-associated protein alpha chain (Cd79a) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (Syk). Maximal Syk activation requires both Syk SH2 domains and phosphorylation of both ITAM tyrosine residues.
details
CD3E_HUMAN185202Avidity‑sensingPhosphorylation of Y188 and Y199 in the ITAM motif of T-cell surface glycoprotein CD3 epsilon chain (CD3E) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details
CD3E_HUMAN185202Avidity‑sensingPhosphorylation of Y188 and Y199 in the ITAM motif of T-cell surface glycoprotein CD3 epsilon chain (CD3E) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details
CD3Z_HUMAN108126Avidity‑sensingPhosphorylation of Y111 and Y123 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3Z_HUMAN108126Avidity‑sensingPhosphorylation of Y111 and Y123 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3Z_HUMAN139156Avidity‑sensingPhosphorylation of Y142 and Y153 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3Z_HUMAN139156Avidity‑sensingPhosphorylation of Y142 and Y153 in the ITAM motif of T-cell surface glycoprotein CD3 zeta chain (CD247) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3G_HUMAN157174Avidity‑sensingPhosphorylation of Y160 and Y171 in the ITAM motif of T-cell surface glycoprotein CD3 gamma chain (CD3G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
CD3G_HUMAN157174Avidity‑sensingPhosphorylation of Y160 and Y171 in the ITAM motif of T-cell surface glycoprotein CD3 gamma chain (CD3G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase ZAP-70 (ZAP70).
details
FCG2A_HUMAN285307Avidity‑sensingPhosphorylation of Y288 and Y304 in the ITAM motif of Low affinity immunoglobulin gamma Fc region receptor II-a (FCGR2A) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details
FCG2A_HUMAN285307Avidity‑sensingPhosphorylation of Y288 and Y304 in the ITAM motif of Low affinity immunoglobulin gamma Fc region receptor II-a (FCGR2A) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details
FCERG_HUMAN6279Avidity‑sensingPhosphorylation of Y65 and Y76 in the ITAM motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details
FCERG_HUMAN6279Avidity‑sensingPhosphorylation of Y65 and Y76 in the ITAM motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK).
details

LIG_TYR_ITIM - ITIM (immunoreceptor tyrosine-based inhibitory motif). Phosphorylation of the ITIM motif, found in the cytoplasmic tail of some inhibitory receptors (KIRs) that bind MHC Class I, leads to the recruitment and activation of a protein tyrosine phosphatase.
FCG2B_HUMAN290295BinaryPhysicochemical compatibilityPhosphorylation of Y292 in the ITIM motif of Low affinity immunoglobulin gamma Fc region receptor II-b (FCGR2B) induces binding of Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 (INPP5D) via its SH2 domain.
details
KI3L2_HUMAN396401BinaryPhysicochemical compatibilityPhosphorylation of Y398 in the ITIM motif of Killer cell immunoglobulin-like receptor 3DL2 (KIR3DL2) induces binding of Tyrosine-protein phosphatase non-receptor type 6 (PTPN6) via one of its SH2 domains.
details
OX1R_HUMAN356361Avidity‑sensingOrexin-A induced phosphorylation of the ITSM and ITIM motifs in Orexin receptor type 1 (HCRTR1) allows binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via its two SH2 domains. Mutation of either tyrosine in the motifs abolishes binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details
SIG12_MOUSE430435BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Sialic acid-binding Ig-like lectin 12 (Siglec12), abrogating binding to Tyrosine-protein phosphatase non-receptor type 6 (Ptpn6).
details
SIG12_MOUSE430435BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Sialic acid-binding Ig-like lectin 12 (Siglec12), abrogating binding to Tyrosine-protein phosphatase non-receptor type 11 (Ptpn11).
details
TRML1_HUMAN279284BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Trem-like transcript 1 protein (TREML1), abrogating binding to Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details
SIG12_MOUSE430435BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Sialic acid-binding Ig-like lectin 12 (Siglec12), abrogating binding to Tyrosine-protein phosphatase non-receptor type 6 (Ptpn6).
details
SIG12_MOUSE430435BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Sialic acid-binding Ig-like lectin 12 (Siglec12), abrogating binding to Tyrosine-protein phosphatase non-receptor type 11 (Ptpn11).
details
TRML1_HUMAN279284BinaryPre‑translationalAlternative splicing removes the ITIM (immunoreceptor tyrosine-based inhibitory motif) of Trem-like transcript 1 protein (TREML1), abrogating binding to Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details
OX1R_HUMAN356361Avidity‑sensingOrexin-A induced phosphorylation of the ITSM and ITIM motifs in Orexin receptor type 1 (HCRTR1) allows binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via its two SH2 domains. Mutation of either tyrosine in the motifs abolishes binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details

LIG_TYR_ITSM - ITSM (immunoreceptor tyrosine-based switch motif). This motif is present in the cytoplasmic region of the CD150 subfamily within the CD2 family and it enables these receptors to bind to and to be regulated by SH2 adaptor molecules, as SH2DIA.
SLAF1_HUMAN277284BinaryPhysicochemical compatibilityPhosphorylation of Y281 in the ITSM motif of Signaling lymphocytic activation molecule (SLAMF1) induces binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via one of its SH2 domains.
details
SLAF1_HUMAN323330BinaryPhysicochemical compatibilityPhosphorylation of Y327 in the ITSM motif of Signaling lymphocytic activation molecule (SLAMF1) induces binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via one of its SH2 domains.
details
OX1R_HUMAN7986Avidity‑sensingOrexin-A induced phosphorylation of the ITSM and ITIM motifs in Orexin receptor type 1 (HCRTR1) allows binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via its two SH2 domains. Mutation of either tyrosine in the motifs abolishes binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details
SLAF7_HUMAN280287BinaryPre‑translationalAlternative splicing removes the ITSM (immunoreceptor tyrosine-based switch motif) motif of SLAM family member 7 (SLAMF7), abrogating binding to SH2 domain-containing protein 1A (SH2D1A). The full-length isoform (Isoform CS1-L of SLAM family member 7 (SLAMF7)) has 2 ITSM motifs and only one is missing in the shorter splice variant (Isoform 19A24 of SLAM family member 7 (SLAMF7)). However, experiments showed only Isoform CS1-L of SLAM family member 7 (SLAMF7) binds to SH2D1A.
details
OX1R_HUMAN7986Avidity‑sensingOrexin-A induced phosphorylation of the ITSM and ITIM motifs in Orexin receptor type 1 (HCRTR1) allows binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) via its two SH2 domains. Mutation of either tyrosine in the motifs abolishes binding of Tyrosine-protein phosphatase non-receptor type 11 (PTPN11).
details
           
Please send any suggestions/comments to: switches@elm.eu.org