About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P63165 (7 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Binary Subtype: Pre‑translationalType: Cumulative Subtype: Rheostatic
Type: Uncategorised Subtype: Uncategorised


ProteinMotifStartEndSwitch descriptionInformation

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
PIAS1_HUMANLIG_SUMO_SBM_1457461Phosphorylation of S466 and S467 and S468 in the SUMO-binding motif of E3 SUMO-protein ligase PIAS1 (PIAS1) by CK2 subfamily and CK2 subfamily and CK2 subfamily increases the strength of its interaction with Small ubiquitin-related modifier 1 (SUMO1).
details
PIAS1_HUMANLIG_SUMO_SBM_1457461Acetylation of K37 in Small ubiquitin-related modifier 1 (SUMO1) inhibits binding to E3 SUMO-protein ligase PIAS1 (PIAS1). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily.
details
PIAS2_HUMANLIG_SUMO_SBM_1467471Acetylation of K37 in Small ubiquitin-related modifier 1 (SUMO1) inhibits binding to E3 SUMO-protein ligase PIAS2 (PIAS2). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily.
details
DAXX_HUMANLIG_SUMO_SBM_1733740Acetylation of K37 in the SUMO1 inhibits binding to the Small ubiquitin-related modifier 1 (SUMO1) protein see switch details. SUMO-modified forms of Protein PML (PML) are essential for the recruitment of DAXX to PML nuclear bodies. The acetylated versions of SUMO1/2 failed to trigger recruitment of DAXX into the nuclear bodies. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily.
details

Type: Binary Subtype: Pre‑translational
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
PML_HUMANLIG_SUMO_SBM_1556566Alternative splicing removes the Sumoylation interacting motif (SIM) of Protein PML (PML), abrogating binding to Small ubiquitin-related modifier 1 (SUMO1) in Isoform TRIM19epsilon of Protein PML (PML). Isoforms lacking the SIM were resistant to As2O3-induced PML degradation.
details

Type: Cumulative Subtype: Rheostatic
Rheostatic switches gradually alter the affinity of a motif for a single binding partner by addition of multiple PTMs that additively contribute to this modulation. Additional modifications can either strengthen or weaken an interaction.
DAXX_HUMANLIG_SUMO_SBM_1734740Multisite phosphorylation of S737 and S739 in the SUMO-binding motif of Death domain-associated protein 6 (DAXX) by CK2 subfamily and CK2 subfamily increases the strength of the interaction with Small ubiquitin-related modifier 1 (SUMO1).
details

Type: Uncategorised Subtype: Uncategorised
Switches that have unique regulatory mechanisms. As more instances accumulate these switches may be worthy of a novel switch type
DAXX_HUMANLIG_SUMO_SBM_1733740Sumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies.
details
           
Please send any suggestions/comments to: switches@elm.eu.org