About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: ELM:LIG_14-3-3_2 (9 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Avidity‑sensing Subtype: Type: Binary Subtype: Physicochemical compatibilityType: Specificity Subtype: Domain hiding


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Domain hiding
A domain can be sterically masked by binding of an effector when there is a large difference in intrinsic affinity of the domain for different binding partners, or a large difference in the local abundance of these partners, thereby precluding further interactions of the domain. Binding of the masking molecule can be PTM-dependent or -independent.
MEI2_SCHPOLIG_14-3-3_1;ELM435
523
440
529
Binding of meiRNA meiotic non-coding RNA (meiRNA) to the RRM domains of Meiosis protein mei2 (mei2) is essential for promotion of premeiotic DNA synthesis and meiosis I and is blocked by Pat1-mediated phosphorylation-induced binding of the 14-3-3 protein DNA damage checkpoint protein rad24 (rad24) to 2 14-3-3 binding motifs in mei2
details

Type: Avidity‑sensing Subtype:
Multiple low-affinity interactions give rise to high-avidity interactions that have increased binding strength, with more than additive affinity.
MEI2_SCHPOLIG_14-3-3_2523529Phosphorylation of two 14-3-3-binding motifs in Meiosis protein mei2 (mei2) by Negative regulator of sexual conjugation and meiosis (ran1) induces high-avidity binding to dimeric DNA damage checkpoint protein rad24 (rad24), with pT527 being the high-affinity interaction site.
details
FOXO4_HUMANLIG_14-3-3_2193199Phosphorylation of two 14-3-3-binding motifs in Foxo4 by PKB induces binding of 14-3-3 dimer. In the nucleus, this blocks binding to DNA, while in the cytoplasm it blocks reimport of Foxo4 into the nucleus by blocking its Nuclear Localisation Signal (NLS). Since binding of 14-3-3 to a single motif occurs with an affinity similar to the affinity of Foxo4 for DNA, multivalent binding of 14-3-3 dimer is required for efficient inhibition of DNA binding.
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
PTPN3_MOUSELIG_14-3-3_2355361Phosphorylation of S359 in the 14-3-3-binding motif of Tyrosine-protein phosphatase non-receptor type 3 (Ptpn3) induces binding to the 14-3-3 protein beta/alpha (Ywhab) protein.
details
NAC1_HUMANLIG_14-3-3_2388394Phosphorylation of S392 in the 14-3-3-binding motif of Sodium/calcium exchanger 1 (SLC8A1) induces binding to the 14-3-3 protein epsilon (YWHAE) protein. This interaction inhibits the activity of Sodium/calcium exchanger 1 (SLC8A1).
details
FOXO4_HUMANLIG_14-3-3_2193199Phosphorylation of S197 by in the 14-3-3-binding motif of Forkhead box protein O4 (FOXO4) induces binding to the 14-3-3 protein zeta/delta (YWHAZ) protein.
details
TF65_HUMANLIG_14-3-3_24147Phosphorylation of S45 by in the 14-3-3-binding motif of Transcription factor p65 (RELA) induces binding to the 14-3-3 protein eta (YWHAH) protein.
details
PDE3A_HUMANLIG_14-3-3_2424430Phosphorylation of S428 by in the 14-3-3-binding motif of cGMP-inhibited 3',5'-cyclic phosphodiesterase A (PDE3A) induces binding to the 14-3-3 protein zeta/delta (YWHAZ) protein.
details
TESK1_RATLIG_14-3-3_2435441Phosphorylation of S439 in the 14-3-3-binding motif of Dual specificity testis-specific protein kinase 1 (Tesk1) induces binding to the 14-3-3 protein beta/alpha (Ywhab) protein. This interaction inhibits the kinase activity of Dual specificity testis-specific protein kinase 1 (Tesk1).
details
           
Please send any suggestions/comments to: switches@elm.eu.org