x

Domain hiding | Altered binding specificity | Motif hiding | Composite binding site formation |

Uncategorised | Rheostatic | Allostery | Avidity-sensing |

Physicochemical compatibility | Pre-translational | Competition |

Protein | Motif | Start | End | Switch description | Information |

Binary Type: Physicochemical compatibilitySubtype: | |||||||

PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||

NFAC1_HUMAN | MOD_GSK3_1 | 287 | 294 | Phosphorylation of S294 adjacent to the NLS of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) by cAMP subfamily primes Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) for subsequent phosphorylation by Glycogen synthase kinase-3 beta (GSK3B), which results in inhibition of nuclear import of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). | |||

NFAC1_HUMAN | MOD_GSK3_1 | 238 | 245 | Phosphorylation of S245 adjacent to the NLS of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) by cAMP subfamily primes Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) for subsequent phosphorylation by Glycogen synthase kinase-3 beta (GSK3B), which results in inhibition of nuclear import of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). | |||

NFAC1_HUMAN | TRG_NLS_MonoExtN_4 | 262 | 269 | Phosphorylation of S241 and S290 adjacent to the NLS of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) by Glycogen synthase kinase-3 beta (GSK3B) and Glycogen synthase kinase-3 beta (GSK3B) inhibits nuclear import of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) by disrupting its interaction with Importin subunit alpha-2 (KPNA2). Calcium-dependent dephosphorylation by calcineurin promotes nuclear import. | |||

Binary Type: Pre‑translationalSubtype: | |||||||

Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||

NFAC1_HUMAN | MOD_SUMO | 701 | 704 | Alternative splicing removes the Sumoylation motif (SIM) of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), preventing the sumolyation of Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). Both the Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) exert a differential effect upon IL-2 expression. However, the longer isoform, Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), has a sumoylation motif and is therefore negatively regulated in a sumolyation-dependent manner. | |||

NFAC1_HUMAN | MOD_SUMO | 913 | 916 | Alternative splicing removes the Sumoylation motif (SIM) of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), preventing the sumolyation of Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). Both the Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) exert a differential effect upon IL-2 expression. However, the longer isoform, Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), has a sumoylation motif and is therefore negatively regulated in a sumolyation-dependent manner. |