About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P42229 (4 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Binary Subtype: Pre‑translational


ProteinMotifStartEndSwitch descriptionInformation

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
IL2RB_HUMANLIG_SH2_III531540Phosphorylation of Y536 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Signal transducer and activator of transcription 5A (STAT5A) protein.
details
STA5A_HUMANLIG_SH2_III686702Phosphorylation of Y694 in the SH2-binding motif of Signal transducer and activator of transcription 5A (STAT5A) induces binding to the Signal transducer and activator of transcription 5B (STAT5B) protein.
details

Type: Binary Subtype: Pre‑translational
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
STA5A_HUMANLIG_SH2_STAT5694697Alternative splicing removes the regulatory Y694 residue of Signal transducer and activator of transcription 5A (STAT5A). The phosphorylation of Y694 by Proto-oncogene tyrosine-protein kinase Src (SRC) has been shown to be essential for DNA binding. This event acts as an important regulatory mechanism (See Clark et al. (2005) (here) and Okutani et al. (2001) (here)). The exact function of Y694 remains uncertain as is binding to STAT5 in dimer. The STAT5A-DeltaE18 does not enter nucleus upon PRLR stimulation.
details
PRLR_HUMANLIG_SH2_STAT5342345Alternative Splicing removes the degron motif of Prolactin receptor (PRLR), abrogating binding to Signal transducer and activator of transcription 5A (STAT5A). The PRLR S1a (Isoform Short form 1a of Prolactin receptor (PRLR)) and S1b and (Isoform Short form 1b of Prolactin receptor (PRLR)) isoforms were unable to mediate the transcriptional activation of the beta-casein promoter via the JAK-STAT5 pathway. Therefore these two splice variants act as dominant negatives on the full-length version LF (Isoform 1 of Prolactin receptor (PRLR)). Another study showed that different splice variants of heterodimers (e.g. LF/S1a, LF/S1b) that were able to induce JAK2 phosphorylation but not further signalling events due to lack of STAT recruitment (Qazi et al. (2006) (here)).
details
           
Please send any suggestions/comments to: switches@elm.eu.org