About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:Q9Y2T3 (2 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Guanine deaminase


MotifStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

Guanine deaminase - GDA -  Homo sapiens
LIG_PDZ_Class_1449454BinaryPre‑translationalAlternative splicing removes the PDZ-binding motif of Guanine deaminase (GDA) (Nedasin), abrogating binding to Disks large homolog 3 (DLG3). Isoform 1 of Guanine deaminase (GDA) (Nedasin S) is predominately expressed in neuronal tissues and binds PDZ domains. Isoform 3 of Guanine deaminase (GDA) (Nedasin V1), which is predominately expressed in non-neuronal tissues, does not bind PDZ domains. The presence of Nedasin S inhibits binding of NMDA receptors and K+ channels to PDZ domain-containing proteins such as members of the MAGUK family. This suggests that GDA might modulate the receptor clustering function of the PDZ domains of MAGUK family members, and this modulation is regulated by alternative splicing of GDA transcripts.
details
LIG_PDZ_Class_1449454BinaryPre‑translationalAlternative splicing removes the PDZ-binding motif of Guanine deaminase (GDA) (Nedasin), abrogating binding to Disks large homolog 3 (DLG3). Isoform 1 of Guanine deaminase (GDA) (Nedasin S) is predominately expressed in neuronal tissues and binds PDZ domains. Isoform 3 of Guanine deaminase (GDA) (Nedasin V1), which is predominately expressed in non-neuronal tissues, does not bind PDZ domains. The presence of Nedasin S inhibits binding of NMDA receptors and K+ channels to PDZ domain-containing proteins such as members of the MAGUK family. This suggests that GDA might modulate the receptor clustering function of the PDZ domains of MAGUK family members, and this modulation is regulated by alternative splicing of GDA transcripts.
details
           
Please send any suggestions/comments to: switches@elm.eu.org