Type: Specificity Subtype: Competition |
Competitive binding of multiple binding partners to overlapping or adjacent, mutually exclusive interaction interfaces depends on local target protein abundance, which can be regulated by changing the expression level or subcellular localisation of the competitors, or by scaffolding.
|
P73_HUMAN | LIG_WW_1 | 484 | 487 | The transcriptional coactivator YAP1 and the ubiquitin ligase Itch competitively bind to the same WW-binding motif of p73. Binding of YAP1 prevents Itch-mediated ubiquitylation of p73, resulting in stabilisation, and increases trancriptional activity of p73. | details |
P73_HUMAN | LIG_WW_1 | 484 | 487 | The transcriptional coactivator YAP1 and the ubiquitin ligase Itch competitively bind to the same WW-binding motif of p73. Binding of YAP1 prevents Itch-mediated ubiquitylation of p73, resulting in stabilisation, and increases trancriptional activity of p73. | details |
Type: Binary Subtype: Pre‑translational |
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
|
AMOT_HUMAN | LIG_WW_1 | 239 | 242 | Alternative splicing removes the WW-binding motif of Angiomotin (AMOT), abrogating binding to Yorkie homolog (YAP1). The splice specific Isoform p130 of Angiomotin (AMOT) of AMOT works within the Hippo pathway to sequester the transcription coactivator YAP1 away at tight junction. In contrast Isoform p80 of Angiomotin (AMOT) of AMOT lacks WW-binding motif. | details |
AMOT_HUMAN | LIG_WW_1 | 239 | 242 | Alternative splicing removes the WW-binding motif of Angiomotin (AMOT), abrogating binding to Yorkie homolog (YAP1). The splice specific Isoform p130 of Angiomotin (AMOT) of AMOT works within the Hippo pathway to sequester the transcription coactivator YAP1 away at tight junction. In contrast Isoform p80 of Angiomotin (AMOT) of AMOT lacks WW-binding motif. | details |
Type: Specificity Subtype: Altered binding specificity |
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
|
YAP1_HUMAN | MOD_LATS_1 | 376 | 382 | Phosphorylation of Yorkie homolog (YAP1) at S381 by Serine/threonine-protein kinase LATS1 (LATS1) (a key regulator of the Hippo Pathway) primes the sequence for phosphorylation by Casein kinase I isoform epsilon (CSNK1E) at S384 and S387. This targets YAP1 to the SCF ubiqutin ligase complex, F-box/WD repeat-containing protein 1A (BTRC), which marks is YAP1 for subsequent degradation by the proteasomal system. N.B. Serine/threonine-protein kinase LATS2 (LATS2) can replace LATS1 and Casein kinase I isoform delta (CSNK1D) can replace CSNK1E | details |
YAP1_HUMAN | MOD_CK1_1 | 381 | 387 | Phosphorylation of Yorkie homolog (YAP1) at S381 by Serine/threonine-protein kinase LATS1 (LATS1) (a key regulator of the Hippo Pathway) primes the sequence for phosphorylation by Casein kinase I isoform epsilon (CSNK1E) at S384 and S387. This targets YAP1 to the SCF ubiqutin ligase complex, F-box/WD repeat-containing protein 1A (BTRC), which marks is YAP1 for subsequent degradation by the proteasomal system. N.B. Serine/threonine-protein kinase LATS2 (LATS2) can replace LATS1 and Casein kinase I isoform delta (CSNK1D) can replace CSNK1E | details |
YAP1_HUMAN | MOD_CK1_1 | 384 | 390 | Phosphorylation of Yorkie homolog (YAP1) at S381 by Serine/threonine-protein kinase LATS1 (LATS1) (a key regulator of the Hippo Pathway) primes the sequence for phosphorylation by Casein kinase I isoform epsilon (CSNK1E) at S384 and S387. This targets YAP1 to the SCF ubiqutin ligase complex, F-box/WD repeat-containing protein 1A (BTRC), which marks is YAP1 for subsequent degradation by the proteasomal system. N.B. Serine/threonine-protein kinase LATS2 (LATS2) can replace LATS1 and Casein kinase I isoform delta (CSNK1D) can replace CSNK1E | details |
YAP1_HUMAN | DEG_SCF_TRCP1_2 | 383 | 387 | Phosphorylation of Yorkie homolog (YAP1) at S381 by Serine/threonine-protein kinase LATS1 (LATS1) (a key regulator of the Hippo Pathway) primes the sequence for phosphorylation by Casein kinase I isoform epsilon (CSNK1E) at S384 and S387. This targets YAP1 to the SCF ubiqutin ligase complex, F-box/WD repeat-containing protein 1A (BTRC), which marks is YAP1 for subsequent degradation by the proteasomal system. N.B. Serine/threonine-protein kinase LATS2 (LATS2) can replace LATS1 and Casein kinase I isoform delta (CSNK1D) can replace CSNK1E | details |