About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:O15151 (3 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Avidity‑sensing Subtype: Type: Binary Subtype: Physicochemical compatibility


ProteinMotifStartEndSwitch descriptionInformation

Type: Avidity‑sensing Subtype:
Multiple low-affinity interactions give rise to high-avidity interactions that have increased binding strength, with more than additive affinity.
MDM4_HUMANLIG_14-3-3_1364369Optimal binding of 14-3-3 dimer to Hdmx in response to DNA damage requires phosphorylation of two 14-3-3-binding motifs by Chk2 kinase. Binding of 14-3-3 dimer is involved in inactivation of Hdmx, a negative regulator of p53, in response to DNA damage.
details
MDM4_HUMANLIG_14-3-3_3339344Optimal binding of 14-3-3 dimer to Hdmx in response to DNA damage requires phosphorylation of two 14-3-3-binding motifs by Chk2 kinase. Binding of 14-3-3 dimer is involved in inactivation of Hdmx, a negative regulator of p53, in response to DNA damage.
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
MDM4_HUMANDOC_USP7_1398402Phosphorylation of S403 adjacent to the USP7-binding motif of Protein Mdm4 (MDM4) by Serine-protein kinase ATM (ATM) inhibits binding to the Ubiquitin carboxyl-terminal hydrolase 7 (USP7), thereby reducing deubiquitylation of Protein Mdm4 (MDM4). As a result, ubiquitylation by E3 ubiquitin-protein ligase Mdm2 (MDM2) is not countered and Protein Mdm4 (MDM4) is targeted for proteasomal degradation.
details
           
Please send any suggestions/comments to: switches@elm.eu.org