Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Type: Binary Subtype: Physicochemical compatibility | Type: Binary Subtype: Pre‑translational |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
DAB1_MOUSE | LIG_SH2_IA | 232 | 235 | Phosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk). | |||
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
DAB1_MOUSE | LIG_SH2_IA | 220 | 223 | Alternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)). | |||
DAB1_MOUSE | LIG_SH2_IA | 232 | 235 | Alternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)). |