Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Start | End | Switch Type | Switch Subtype | Switch Description | Information |
DOC_CYCLIN_1 - Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes. Predicted proteins should have a CDK phosphorylation site. Also used by cyclin/cdk inhibitors. | |||||||
CDN1B_HUMAN | 30 | 33 | Specificity | Domain hiding | Binding of the CDK-cyclin inhibitor p27 (Cyclin-dependent kinase inhibitor 1B (CDKN1B)) blocks the substrate recruitment site on Cyclin-A2 (CCNA2). | ||
CDC6_HUMAN | 94 | 98 | Specificity | Domain hiding | Binding of the CDK-cyclin inhibitor p27 (Cyclin-dependent kinase inhibitor 1B (CDKN1B)) blocks the substrate recruitment site on Cyclin-A2 (CCNA2). | ||
RB_HUMAN | 873 | 877 | Specificity | Competition | The docking sites for PP1 (e.g. Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PPP1CA)) and Cdk-Cyclins (e.g. Cyclin-A2 (CCNA2)) on Retinoblastoma-associated protein (RB1) overlap, which makes their binding to RB1 mutually exclusive. Hypophosphorylated RB1 blocks E2F-dependent transcription, while hyperphosphorylation inactivates RB1 as a repressor, thereby promoting cell cycle progression. | ||
DOC_PP1 - Protein phosphatase 1 catalytic subunit (PP1c) interacting motif binds targeting proteins that dock to the substrate for dephosphorylation. The motif defined is [RK]{0,1}[VI][^P][FW]. | |||||||
RB_HUMAN | 872 | 878 | Specificity | Competition | The docking sites for PP1 (e.g. Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PPP1CA)) and Cdk-Cyclins (e.g. Cyclin-A2 (CCNA2)) on Retinoblastoma-associated protein (RB1) overlap, which makes their binding to RB1 mutually exclusive. Hypophosphorylated RB1 blocks E2F-dependent transcription, while hyperphosphorylation inactivates RB1 as a repressor, thereby promoting cell cycle progression. |