Motif | Protein | Start | End | Switch Type | Switch Subtype | Switch description | Information | Evidence |
GABAergic synapse (KEGG - hsa04727) | ||||||||
TRG_ER_diArg_1 | GABR1_HUMAN | 923 | 926 | Specificity | Motif hiding | Interaction of the GABA receptor R2 subunit (Gamma-aminobutyric acid type B receptor subunit 2 (GABBR2)) with the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)) via coiled-coil forming domains masks the ER retention motif in the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)), thereby promoting surface expression of fully assembled GABA receptors. | Inferred | |
Glutamatergic synapse (KEGG - hsa04724) | ||||||||
TRG_ER_diArg_1 | NMDZ1_HUMAN | 893 | 895 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | Inferred | |
TRG_ER_diArg_1 | NMDZ1_HUMAN | 893 | 895 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | Inferred | |
TRG_ER_diArg_1 | NMDZ1_HUMAN | 893 | 895 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | Inferred | |
Neuroactive ligand-receptor interaction (KEGG - hsa04080) | ||||||||
TRG_ER_diArg_1 | GABR1_HUMAN | 923 | 926 | Specificity | Motif hiding | Interaction of the GABA receptor R2 subunit (Gamma-aminobutyric acid type B receptor subunit 2 (GABBR2)) with the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)) via coiled-coil forming domains masks the ER retention motif in the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)), thereby promoting surface expression of fully assembled GABA receptors. | Inferred |