Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Motif | Start | End | Switch Type | Switch Subtype | Switch Description | Information |
Estrogen receptor beta - ESR2 -  Homo sapiens | |||||||
MOD_GSK3_1 | 5 | 12 | Binary | Physicochemical compatibility | The GSK3-beta binding site at S12 in Estrogen receptor beta (ESR2) is primed by (most likely) RAC-alpha serine/threonine-protein kinase (AKT1). This enhances the binding of SUMO-conjugating enzyme UBC9 (UBE2I) at the adjacent Sumoylation site. This site is also primed at S6 (most likely) by AKT1. The addition of SUMO at K4 stabilises ESR2 as it prevents the ubiquitination at K4 (see switch details | ||
MOD_SUMO_PHOS | 4 | 7 | Binary | Physicochemical compatibility | The GSK3-beta binding site at S12 in Estrogen receptor beta (ESR2) is primed by (most likely) RAC-alpha serine/threonine-protein kinase (AKT1). This enhances the binding of SUMO-conjugating enzyme UBC9 (UBE2I) at the adjacent Sumoylation site. This site is also primed at S6 (most likely) by AKT1. The addition of SUMO at K4 stabilises ESR2 as it prevents the ubiquitination at K4 (see switch details) | ||
MOD_SUMO_PHOS | 4 | 7 | Binary | Physicochemical compatibility | Sumoylation of K4 in Estrogen receptor beta (ESR2) is inhibited by ubiquitination K4. This destabilises ESR2 increasing its turnover (see also switch details) | ||
Thioredoxin reductase 1, cytoplasmic - TXNRD1 -  Homo sapiens | |||||||
LIG_NRBOX | 46 | 52 | Binary | Pre‑translational | Alternative splicing removes the NRBOX motif of Isoform TXNRD1_v2 of Thioredoxin reductase 1, cytoplasmic (TXNRD1), abrogating binding to Estrogen receptor beta (ESR2). Unlike splice variants without the NRBOX motif, TrxR1b (also known as Isoform TXNRD1_v2 of Thioredoxin reductase 1, cytoplasmic (TXNRD1)) is identified within the nucleus. TrxR1b enhanced the transcriptional activity of the estrogen receptors ESR1 and ESR2, possibly by providing a reduced environment in the immediate vicinity of the ERs. |