Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Avidity‑sensing Subtype: | |||||||
Multiple low-affinity interactions give rise to high-avidity interactions that have increased binding strength, with more than additive affinity. | |||||||
FCERG_HUMAN | LIG_TYR_ITAM | 62 | 79 | Phosphorylation of Y65 and Y76 in the ITAM motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK). | |||
FCERG_HUMAN | LIG_TYR_ITAM | 62 | 79 | Phosphorylation of Y65 and Y76 in the ITAM motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces high-avidity binding to the tandem SH2 domains of Tyrosine-protein kinase SYK (SYK). | |||
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
FCERG_HUMAN | LIG_SH2_IA | 75 | 79 | Phosphorylation of Y76 in the SH2-binding motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces binding to the Tyrosine-protein kinase SYK (SYK) protein. |