Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
KIF1B_MOUSE | LIG_PDZ_Class_1 | 1145 | 1150 | Alternative splicing removes the PDZ-binding motif of Isoform 3 of Kinesin-like protein KIF1B (Kif1b), abrogating binding to PDZ domain-containing protein GIPC1 (Gipc1). | |||
PKHG5_MOUSE | LIG_PDZ_Class_1 | 1068 | 1073 | Alternative splicing removes the PDZ-binding motif of Pleckstrin homology domain-containing family G member 5 (Plekhg5), abrogating binding to PDZ domain-containing protein GIPC1 (Gipc1). The PDZ adaptor protein Gipc1 (Synectin) bound the longer splice variant, Isoform SYX1 of Pleckstrin homology domain-containing family G member 5 (Plekhg5) (Syx1), which was targeted to the plasma membrane in a Synectin-dependent manner. The shorter variant, Isoform SYX2 of Pleckstrin homology domain-containing family G member 5 (Plekhg5) (Syx2), was diffusely distributed in the cytoplasm. Expression of Syx1 augmented endothelial cell migration and tube formation, whereas Syx2 expression did not. Significant expression of Syx2 was only seen in brain tumour cells, which also exhibited high basal Transforming protein RhoA (Rhoa) activity. |