Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Type: Binary Subtype: Physicochemical compatibility | Type: Specificity Subtype: Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Specificity Subtype: Competition | |||||||
Competitive binding of multiple binding partners to overlapping or adjacent, mutually exclusive interaction interfaces depends on local target protein abundance, which can be regulated by changing the expression level or subcellular localisation of the competitors, or by scaffolding. | |||||||
SNX9_HUMAN | LIG_Glycolytic_Aldolase | 165 | 169 | Sorting nexin-9 (SNX9) and fructose-1,6-bisphosphate (D-fructose 1,6-bisphosphate) bind mutually exclusive and with similar affinities to Fructose-bisphosphate aldolase A (ALDOA). | |||
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
SNX9_HUMAN | LIG_Glycolytic_Aldolase | 165 | 169 | Phosphorylation of the LC4 region of Sorting nexin-9 (SNX9) abolishes its interaction with Fructose-bisphosphate aldolase A (ALDOA). However, the exact position of the residues that are phosphorylated and regulate binding is not known. |