Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
ITB1_HUMAN | LIG_Talin | 775 | 785 | Alternative splicing alters the flanking regions of the PTB-binding motif of Isoform Beta-1D of Integrin beta-1 (ITGB1), inducing higher affinity binding to Talin-1 (TLN1). Alteration of residue 788 from G to Q and alteration of residue 786 from A to P increases the binding affinity from 491 micromolar in the canonical Isoform Beta-1A of Integrin beta-1 (ITGB1) to 95 micromolar in Isoform Beta-1D of Integrin beta-1 (ITGB1). | |||
ITB1_HUMAN | LIG_Talin | 775 | 785 | Alternative splicing alters the flanking regions of the PTB-binding motif of Isoform Beta-1D of Integrin beta-1 (ITGB1), inducing higher affinity binding to Talin-2 (TLN2). The alteration of residue 788 from G to Q and alteration of residue 786 from A to P increases the binding affinity from 652 micromolar in the canonical Isoform Beta-1A of Integrin beta-1 (ITGB1) to 36 micromolar in Isoform Beta-1D of Integrin beta-1 (ITGB1). |