About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway         Hide inferred   Group Index    Colouring Info              Filtered: UNIPROT:Q15303 (8 hits) x


x  Coloured by: Pathway evidence source
          Curated          inferred


x  Index
EndocytosisErbB signaling pathway


MotifProteinStartEndSwitch TypeSwitch SubtypeSwitch descriptionInformationEvidence

Endocytosis (KEGG - hsa04144)
LIG_WW_1 ERBB4_HUMAN10531056SpecificityAltered binding specificityPhosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
Inferred
LIG_SH2_STAT5 ERBB4_HUMAN10561059SpecificityAltered binding specificityPhosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
Inferred
LIG_WW_1 ERBB4_HUMAN10531056BinaryPre‑translationalAlternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH.
details
Inferred
LIG_WW_1 ERBB4_HUMAN10531056BinaryPre‑translationalAlternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH.
details
Inferred

ErbB signaling pathway (KEGG - hsa04012)
LIG_WW_1 ERBB4_HUMAN10531056SpecificityAltered binding specificityPhosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
Inferred
LIG_SH2_STAT5 ERBB4_HUMAN10561059SpecificityAltered binding specificityPhosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
Inferred
LIG_SH2_IIA ERBB4_HUMAN10561059BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
Inferred
LIG_SH2_IIA ERBB4_HUMAN10561059BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
Inferred
           
Please send any suggestions/comments to: switches@elm.eu.org