Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
PEX5R_MOUSE | TRG_LysEnd_APsAcLL_1 | 14 | 19 | Alternative splicing removes the di-leucine endocytosis motif of PEX5-related protein (Pex5l), abrogating binding to AP-2 complex subunit sigma (Ap2s1). The motif is present in exon 5. | |||
Type: Binary Subtype: Allostery | |||||||
The binding properties of a motif or a motif-binding domain are modulated indirectly by allosteric effects resulting from PTM or effector binding at a site that is distinct from the actual interaction interface. | |||||||
CD3D_MOUSE | TRG_LysEnd_APsAcLL_1 | 138 | 143 | Binding of 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate to the AP-2 complex alpha, beta and mu subunits exposes a binding site on the AP-2 complex subunit sigma (Ap2s1) subunit for recruitment of T-cell surface glycoprotein CD3 delta chain (Cd3d) via an endocytosis motif. | |||
CD3G_MOUSE | TRG_LysEnd_APsAcLL_1 | 149 | 154 | Binding of 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate to the AP-2 complex alpha, beta and mu subunits exposes a binding site on the AP-2 complex subunit sigma (Ap2s1) subunit for recruitment of T-cell surface glycoprotein CD3 gamma chain (Cd3g) via an endocytosis motif. |