Type: Binary Subtype: Pre‑translational |
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
|
ERBB4_HUMAN | LIG_WW_1 | 1053 | 1056 | Alternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH. | details |
ERBB4_HUMAN | LIG_SH2_IIA | 1056 | 1059 | Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised. | details |
ERBB4_HUMAN | LIG_SH2_IIA | 1056 | 1059 | Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised. | details |
ERBB4_HUMAN | LIG_WW_1 | 1053 | 1056 | Alternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH. | details |
Type: Specificity Subtype: Altered binding specificity |
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
|
ERBB4_HUMAN | LIG_WW_1 | 1053 | 1056 | Phosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4. | details |
ERBB4_HUMAN | LIG_SH2_STAT5 | 1056 | 1059 | Phosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4. | details |