Type: Binary Subtype: Physicochemical compatibility |
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
|
CASP9_HUMAN | LIG_BIR_III_2 | 315 | 319 | Binding of the BIR domain-binding motif of Caspase-9 (CASP9) to the BIR domains of Baculoviral IAP repeat-containing protein 4 (XIAP) requires cleavage of Caspase-9 (CASP9) at D315, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
CASP9_HUMAN | LIG_BIR_III_2 | 315 | 319 | Binding of the BIR domain-binding motif of Caspase-9 (CASP9) to the BIR domains of Baculoviral IAP repeat-containing protein 2 (BIRC2) requires cleavage of Caspase-9 (CASP9) at D315, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
CASP7_HUMAN | LIG_BIR_III_2 | 23 | 27 | Binding of the BIR domain-binding motif of Caspase-7 (CASP7) to the BIR domains of Baculoviral IAP repeat-containing protein 2 (BIRC2) requires cleavage of Caspase-7 (CASP7) at D23, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
CASP1_DROME | LIG_BIR_III_4 | 33 | 37 | Binding of the BIR domain-binding motif of Caspase-1 (Dcp-1) to the BIR domains of Apoptosis 1 inhibitor (th) requires cleavage of Caspase-1 (Dcp-1) at D33, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
ICE_DROME | LIG_BIR_III_4 | 28 | 32 | Binding of the BIR domain-binding motif of Caspase (Ice) to the BIR domains of Apoptosis 1 inhibitor (th) requires cleavage of Caspase (Ice) at D28, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
CASP7_HUMAN | LIG_BIR_III_2 | 23 | 27 | Binding of the BIR domain-binding motif of Caspase-7 (CASP7) to the BIR domains of Baculoviral IAP repeat-containing protein 2 (BIRC2) requires cleavage of Caspase-7 (CASP7) at D23, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
CASP7_HUMAN | LIG_BIR_III_2 | 23 | 27 | Binding of the BIR domain-binding motif of Caspase-7 (CASP7) to the BIR domains of Baculoviral IAP repeat-containing protein 2 (BIRC2) requires cleavage of Caspase-7 (CASP7) at D23, since this results in a functional neo N-terminal motif. BIR domains are found in Inhibitor of Apoptosis Proteins (IAPs) that suppress the activity of activated caspases, either by directly inhibiting caspase catalytic activity, or by targeting caspases for degradation by ubiquitin modification. | details |
Type: Binary Subtype: Pre‑translational |
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
|
DBLOH_HUMAN | LIG_BIR_internal | 56 | 59 | Alternative splicing removes the BIR-binding motif of Diablo homolog, mitochondrial (DIABLO), abrogating binding to Baculoviral IAP repeat-containing protein 4 (XIAP). Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) is localised to mitochondria via its mitochondrial localisation signal (MLS). Upon entry in mitochondria the MLS is cleaved and Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) is found localised with cytochrome-c. During apoptosis, Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) binds to the second/third BIR domain of Baculoviral IAP repeat-containing protein 4 (XIAP). This interaction disrupts binding of XIAP to processed Caspase-9 (CASP9) and promotes Caspase-3 (CASP3) activation. Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) also promotes ubiquitination of XIAP and subsequent degradation. Isoform 1 of Diablo homolog, mitochondrial (DIABLO) on the other hand did not cause degradation of XIAP. | details |
DBLOH_HUMAN | LIG_BIR_internal | 56 | 59 | Alternative splicing removes the BIR-binding motif of Diablo homolog, mitochondrial (DIABLO), abrogating binding to Baculoviral IAP repeat-containing protein 4 (XIAP). Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) is localised to mitochondria via its mitochondrial localisation signal (MLS). Upon entry in mitochondria the MLS is cleaved and Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) is found localised with cytochrome-c. During apoptosis, Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) binds to the second/third BIR domain of Baculoviral IAP repeat-containing protein 4 (XIAP). This interaction disrupts binding of XIAP to processed Caspase-9 (CASP9) and promotes Caspase-3 (CASP3) activation. Isoform SMAC3 of Diablo homolog, mitochondrial (DIABLO) also promotes ubiquitination of XIAP and subsequent degradation. Isoform 1 of Diablo homolog, mitochondrial (DIABLO) on the other hand did not cause degradation of XIAP. | details |