About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P35222 (6 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: AllosteryType: Binary Subtype: Physicochemical compatibilityType: Specificity Subtype: Altered binding specificity
Type: Specificity Subtype: Domain hiding


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Domain hiding
A domain can be sterically masked by binding of an effector when there is a large difference in intrinsic affinity of the domain for different binding partners, or a large difference in the local abundance of these partners, thereby precluding further interactions of the domain. Binding of the masking molecule can be PTM-dependent or -independent.
CTNB1_HUMANLIG_PDZ_Class_1776781Binding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1).
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
CTNB1_HUMANDOC_WW_Pin1_4243248Phosphorylation of S246 in the Pin1-binding motif of Catenin beta-1 (CTNNB1) induces binding to the Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) protein.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
CTNB1_HUMANMOD_GSK3_13441Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex.
details
CTNB1_HUMANMOD_GSK3_13037Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex.
details
CTNB1_HUMANDEG_SCF_TRCP1_13237Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex.
details

Type: Binary Subtype: Allostery
The binding properties of a motif or a motif-binding domain are modulated indirectly by allosteric effects resulting from PTM or effector binding at a site that is distinct from the actual interaction interface.
CTNB1_HUMANLIG_PDZ_Class_1776781Binding of Ezrin (EZR) via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1), which results in relief of the intramolecular interaction with the PDZ binding ligand, thereby increasing the affinity of the PDZ domain for other ligands, including Catenin beta-1 (CTNNB1).
details
           
Please send any suggestions/comments to: switches@elm.eu.org