Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Type: Binary Subtype: Allostery | Type: Binary Subtype: Physicochemical compatibility | Type: Specificity Subtype: Altered binding specificity |
Type: Specificity Subtype: Domain hiding |
Protein | Motif | Start | End | Switch description | Information |
Type: Specificity Subtype: Domain hiding | |||||||
A domain can be sterically masked by binding of an effector when there is a large difference in intrinsic affinity of the domain for different binding partners, or a large difference in the local abundance of these partners, thereby precluding further interactions of the domain. Binding of the masking molecule can be PTM-dependent or -independent. | |||||||
CTNB1_HUMAN | LIG_PDZ_Class_1 | 776 | 781 | Binding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1). | |||
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
CTNB1_HUMAN | DOC_WW_Pin1_4 | 243 | 248 | Phosphorylation of S246 in the Pin1-binding motif of Catenin beta-1 (CTNNB1) induces binding to the Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) protein. | |||
Type: Specificity Subtype: Altered binding specificity | |||||||
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity. | |||||||
CTNB1_HUMAN | MOD_GSK3_1 | 34 | 41 | Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex. | |||
CTNB1_HUMAN | MOD_GSK3_1 | 30 | 37 | Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex. | |||
CTNB1_HUMAN | DEG_SCF_TRCP1_1 | 32 | 37 | Phosphorylation of Catenin beta-1 (CTNNB1) at T41 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B), which then phosphorylates S37, thereby generating a new docking site for GSK3B. Subsequent phosphorylation of S33 by GSK3B switches the specificity of CTNNB1 to the F-box/WD repeat-containing protein 1A (BTRC), which recruits CTNNB1 to the SCF ubiquitin ligase complex. | |||
Type: Binary Subtype: Allostery | |||||||
The binding properties of a motif or a motif-binding domain are modulated indirectly by allosteric effects resulting from PTM or effector binding at a site that is distinct from the actual interaction interface. | |||||||
CTNB1_HUMAN | LIG_PDZ_Class_1 | 776 | 781 | Binding of Ezrin (EZR) via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1), which results in relief of the intramolecular interaction with the PDZ binding ligand, thereby increasing the affinity of the PDZ domain for other ligands, including Catenin beta-1 (CTNNB1). |