About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:Q15303 (6 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Pre‑translationalType: Specificity Subtype: Altered binding specificity


ProteinMotifStartEndSwitch descriptionInformation

Type: Binary Subtype: Pre‑translational
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
ERBB4_HUMANLIG_WW_110531056Alternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH.
details
ERBB4_HUMANLIG_SH2_IIA10561059Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
ERBB4_HUMANLIG_SH2_IIA10561059Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
ERBB4_HUMANLIG_WW_110531056Alternative splicing removes the WW-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to E3 ubiquitin-protein ligase Itchy homolog (ITCH). The presence of a WW-binding motif mediates ERBB4 mono-ubiquitination and endocytosis by the WW domain-containing HECT-type E3 ubiquitin ligase ITCH.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
ERBB4_HUMANLIG_WW_110531056Phosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
ERBB4_HUMANLIG_SH2_STAT510561059Phosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
           
Please send any suggestions/comments to: switches@elm.eu.org