About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway         Hide inferred   Group Index    Colouring Info              Filtered: UNIPROT:P24941 (16 hits) x


x  Coloured by: Pathway evidence source
          Curated          inferred


x  Index
Cell cyclePI3K-Akt signaling pathway


MotifProteinStartEndSwitch TypeSwitch SubtypeSwitch descriptionInformationEvidence

(Reactome - 2676436)
MOD_CDK_1 CDN1B_HUMAN184190Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
Curated
DEG_SCF_SKP2-CKS1_1 CDN1B_HUMAN183190Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
Curated

Cell cycle (KEGG - hsa04110)
MOD_GSK3_1 CCNE1_HUMAN392399BinaryPhysicochemical compatibilityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 by Cyclin-dependent kinase 2 (CDK2) primes the protein for subsequent phosphorylation at T395 by Glycogen synthase kinase-3 beta (GSK3B).
details
Inferred
MOD_GSK3_1 CCNE1_HUMAN377384SpecificityAltered binding specificityPhosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
Inferred
DEG_SCF_FBW7_1 CCNE1_HUMAN378384SpecificityAltered binding specificityPhosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
Inferred
MOD_GSK3_1 CCNE1_HUMAN392399SpecificityAltered binding specificityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details
Inferred
DEG_SCF_FBW7_1 CCNE1_HUMAN393399SpecificityAltered binding specificityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details
Inferred
MOD_CDK_1 CDN1B_HUMAN184190Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
Curated
DEG_SCF_SKP2-CKS1_1 CDN1B_HUMAN183190Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
Curated
MOD_CDK_1 CDN1C_HUMAN307313Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1C (CDKN1C) (p57) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p57 (CDKN1C) at T310, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p57 (CDKN1C).
details
Curated
DEG_SCF_SKP2-CKS1_1 CDN1C_HUMAN306313Pre‑assemblyComposite binding site formationBinding of Cyclin-dependent kinase inhibitor 1C (CDKN1C) (p57) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p57 (CDKN1C) at T310, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p57 (CDKN1C).
details
Curated

PI3K-Akt signaling pathway (KEGG - hsa04151)
MOD_GSK3_1 CCNE1_HUMAN392399BinaryPhysicochemical compatibilityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 by Cyclin-dependent kinase 2 (CDK2) primes the protein for subsequent phosphorylation at T395 by Glycogen synthase kinase-3 beta (GSK3B).
details
Inferred
MOD_GSK3_1 CCNE1_HUMAN377384SpecificityAltered binding specificityPhosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
Inferred
DEG_SCF_FBW7_1 CCNE1_HUMAN378384SpecificityAltered binding specificityPhosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
Inferred
MOD_GSK3_1 CCNE1_HUMAN392399SpecificityAltered binding specificityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details
Inferred
DEG_SCF_FBW7_1 CCNE1_HUMAN393399SpecificityAltered binding specificityPhosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details
Inferred
           
Please send any suggestions/comments to: switches@elm.eu.org