About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:Q14118 (8 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Specificity Subtype: Altered binding specificityType: Specificity Subtype: Competition


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Competition
Competitive binding of multiple binding partners to overlapping or adjacent, mutually exclusive interaction interfaces depends on local target protein abundance, which can be regulated by changing the expression level or subcellular localisation of the competitors, or by scaffolding.
DAG1_HUMANLIG_WW_1889892The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_SH3_3888894The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_WW_1889892The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_SH3_3888894The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
DAG1_HUMANLIG_WW_1889892Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by Src kinase (Proto-oncogene tyrosine-protein kinase Src (SRC)) switches the specificity of DAG1 from the WW domain containing cytoskeletal linker Dystrophin (DMD) to the SH2 domain containing Tyrosine-protein kinase Fyn (FYN).
details
DAG1_HUMANLIG_SH2_SRC892895Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by Src kinase (Proto-oncogene tyrosine-protein kinase Src (SRC)) switches the specificity of DAG1 from the WW domain containing cytoskeletal linker Dystrophin (DMD) to the SH2 domain containing Tyrosine-protein kinase Fyn (FYN).
details
DAG1_HUMANLIG_WW_1889892Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by c-Src (SRC) switches the specificity of DAG1 from WW domain containing proteins like Utrophin (UTRN) to SH2 domain containing proteins like Tyrosine-protein kinase CSK (CSK).
details
DAG1_HUMANLIG_SH2_SRC892895Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by c-Src (SRC) switches the specificity of DAG1 from WW domain containing proteins like Utrophin (UTRN) to SH2 domain containing proteins like Tyrosine-protein kinase CSK (CSK).
details
           
Please send any suggestions/comments to: switches@elm.eu.org