About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P27986 (7 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Binary Subtype: Pre‑translationalType: Specificity Subtype: Altered binding specificity
Type: Specificity Subtype: Domain hiding


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Domain hiding
A domain can be sterically masked by binding of an effector when there is a large difference in intrinsic affinity of the domain for different binding partners, or a large difference in the local abundance of these partners, thereby precluding further interactions of the domain. Binding of the masking molecule can be PTM-dependent or -independent.
INSR_HUMANLIG_SH2_STAT513611364PIP3 (1-phosphatidyl-1D-myo-inositol 3,4,5-trisphosphate), a product of PI3-kinase, binds to the SH2 domains of PI3K (Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1)) and thereby blocks its interaction with tyrosine-phosphorylated SH2 motif containing proteins.
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
PGFRB_HUMANLIG_SH2_IIA751755Phosphorylation of Y751 in the SH2-binding motif of Platelet-derived growth factor receptor beta (PDGFRB) induces binding to the Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) protein.
details
GAB1_HUMANLIG_SH2_STAT5472475Phosphorylation of Y472 in the SH2-binding motif of GRB2-associated-binding protein 1 (GAB1) induces binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1).
details
GAB1_HUMANLIG_SH2_STAT5447450Phosphorylation of Y447 in the SH2-binding motif of GRB2-associated-binding protein 1 (GAB1) induces binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1).
details

Type: Binary Subtype: Pre‑translational
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
ERBB4_HUMANLIG_SH2_IIA10561059Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details
ERBB4_HUMANLIG_SH2_IIA10561059Alternative splicing removes the SH2-binding motif of Receptor tyrosine-protein kinase erbB-4 (ERBB4), abrogating binding to Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1). The SH2-binding motif overlaps with a WW-binding motif. Binding of these motifs is regulated in a phosphorylation-dependent manner, ensuring ERBB4 is either endocytosed or stabilised.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
ERBB4_HUMANLIG_SH2_STAT510561059Phosphorylation-dependent binding of Receptor tyrosine-protein kinase erbB-4 (ERBB4) to the SH2 domains of Phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R1) results in signaling activation, while binding to the WW domains of E3 ubiquitin-protein ligase Itchy homolog (ITCH) to unphopshorylated ERBB4 results in ubiquitylation, endocytosis and ultimately degradation of ERBB4.
details
           
Please send any suggestions/comments to: switches@elm.eu.org