About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:Q9UER7 (6 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Cumulative Subtype: RheostaticType: Specificity Subtype: Altered binding specificity
Type: Uncategorised Subtype: Uncategorised


ProteinMotifStartEndSwitch descriptionInformation

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
DAXX_HUMANDOC_WW_Pin1_4175180Phosphorylation of S178 in the Pin1-binding motif of Death domain-associated protein 6 (DAXX) induces binding to the Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) protein.
details
DAXX_HUMANLIG_SUMO_SBM_1733740Acetylation of K37 in the SUMO1 inhibits binding to the Small ubiquitin-related modifier 1 (SUMO1) protein see switch details. SUMO-modified forms of Protein PML (PML) are essential for the recruitment of DAXX to PML nuclear bodies. The acetylated versions of SUMO1/2 failed to trigger recruitment of DAXX into the nuclear bodies. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily.
details

Type: Cumulative Subtype: Rheostatic
Rheostatic switches gradually alter the affinity of a motif for a single binding partner by addition of multiple PTMs that additively contribute to this modulation. Additional modifications can either strengthen or weaken an interaction.
DAXX_HUMANLIG_SUMO_SBM_1734740Multisite phosphorylation of S737 and S739 in the SUMO-binding motif of Death domain-associated protein 6 (DAXX) by CK2 subfamily and CK2 subfamily increases the strength of the interaction with Small ubiquitin-related modifier 1 (SUMO1).
details

Type: Uncategorised Subtype: Uncategorised
Switches that have unique regulatory mechanisms. As more instances accumulate these switches may be worthy of a novel switch type
DAXX_HUMANLIG_SUMO_SBM_1733740Sumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies.
details
DAXX_HUMANLIG_SUMO_SBM_1733740Sumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
DAXX_HUMANLIG_SUMO_SBM_1733740Acetylation of K33 in the SUMO2 inhibits binding to the Death domain-associated protein 6 (DAXX) protein see switch details. SUMO-modified forms of Protein PML (PML) are essential for the recruitment of Small ubiquitin-related modifier 2 (SUMO2) to PML nuclear bodies. The acetylated versions of SUMO1/2 failed to trigger recruitment of Small ubiquitin-related modifier 2 (SUMO2) into the nuclear bodies. An additional interaction is also possible upon acetylation with the Bromodomain of Histone acetyltransferase p300 (EP300) shown to bind the acetylated version of SUMO2. This does not occur with acetylated SUMO1. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily.
details
           
Please send any suggestions/comments to: switches@elm.eu.org