About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P24941 (10 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Pre‑assembly Subtype: Composite binding site formationType: Specificity Subtype: Altered binding specificity


ProteinMotifStartEndSwitch descriptionInformation

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
CCNE1_HUMANMOD_GSK3_1392399Phosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 by Cyclin-dependent kinase 2 (CDK2) primes the protein for subsequent phosphorylation at T395 by Glycogen synthase kinase-3 beta (GSK3B).
details
PTHR_HUMANTRG_NLS_Bipartite_1124144Phosphorylation of T121 adjacent to the NLS of Parathyroid hormone-related protein (PTHLH) by Cyclin-dependent kinase 2 (CDK2) disrupts the interaction with Importin subunit beta-1 (KPNB1) and down-regulates nuclear import.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
CCNE1_HUMANMOD_GSK3_1377384Phosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
CCNE1_HUMANDEG_SCF_FBW7_1378384Phosphorylation of Isoform E-S of G1/S-specific cyclin-E1 (CCNE1) at S384 by CDK2 primes CCNE1 for phosphorylation by Glycogen synthase kinase-3 beta (GSK3B) at T380, which creates a recognition site for F box proteins of the SCF ubiquitin ligase complex (F-box/WD repeat-containing protein 7 (FBXW7)) that target CCNE1 for degradation.
details
CCNE1_HUMANMOD_GSK3_1392399Phosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details
CCNE1_HUMANDEG_SCF_FBW7_1393399Phosphorylation of G1/S-specific cyclin-E1 (CCNE1) at S399 generates a docking site for Glycogen synthase kinase-3 beta (GSK3B). Subsequent phosphorylation of CCNE1 by Glycogen synthase kinase-3 beta (GSK3B) at T395 switches the specificity of CCNE1 to the F-box/WD repeat-containing protein 7 (FBXW7), which recruits CCNE1 to the SCF ubiquitin ligase complex to mark CCNE1 for degradation.
details

Type: Pre‑assembly Subtype: Composite binding site formation
The formation of a complex results in the generation of a continuous motif-binding site that spans more than one component of this complex. Neither complex subunit on its own contains a functional binding domain for the motif, and interaction of the motif only occurs in the context of the active, fully assembled complex.
CDN1B_HUMANMOD_CDK_1184190Binding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
CDN1B_HUMANDEG_SCF_SKP2-CKS1_1183190Binding of Cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p27 (CDKN1B) at T187, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p27 (CDKN1B). While some residues, including the phosphorylated T187, bind to CKS1B and others to SKP2, the E185 makes contact with residues of both CKS1B and SKP2.
details
CDN1C_HUMANMOD_CDK_1307313Binding of Cyclin-dependent kinase inhibitor 1C (CDKN1C) (p57) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p57 (CDKN1C) at T310, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p57 (CDKN1C).
details
CDN1C_HUMANDEG_SCF_SKP2-CKS1_1306313Binding of Cyclin-dependent kinase inhibitor 1C (CDKN1C) (p57) to the SCF-Skp2 ubiquitin ligase complex requires phosphorylation of p57 (CDKN1C) at T310, and association of the F-box protein S-phase kinase-associated protein 2 (SKP2) with the regulatory Cyclin-dependent kinases regulatory subunit 1 (CKS1B). SKP2 and CKS1B together generate a composite binding site for p57 (CDKN1C).
details
           
Please send any suggestions/comments to: switches@elm.eu.org