About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P63279 (9 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
MOD_SUMOMOD_SUMO_PHOS


ProteinStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

MOD_SUMO - Motif recognised for modification by SUMO-1
HSF4_HUMAN292295BinaryPre‑translationalAlternative splicing removes the sumoylation motif of Heat shock factor protein 4 (HSF4), abrogating binding to SUMO-conjugating enzyme UBC9 (UBE2I). The phosphorylation-dependent sumoylation of the PDSM (phosphorylation-dependent sumoylation motif) strongly represses Isoform HSF4B of Heat shock factor protein 4 (HSF4) activity.
details
HSF4_HUMAN292295BinaryPhysicochemical compatibilityThe phosphorylation-dependent sumoylation of the PDSM (phosphorylation-dependent sumoylation motif) strongly represses Isoform HSF4B of Heat shock factor protein 4 (HSF4) activity.
details
PML_HUMAN489492BinaryPre‑translationalAlternative splicing removes the SUMO motif of Protein PML (PML), abrogating binding to SUMO-conjugating enzyme UBC9 (UBE2I). The study identified a major sumoylation site within the nuclear localisation signal (NLS) of PML. Although they did not determine whether the lysine residue regulates the NLS, they found that sumoylation was not necessary for nuclear localisation and that SUMO-modification only occurs in the nucleus.
details
PML_HUMAN159162UncategorisedUncategorisedSumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Protein PML (PML) to PML nuclear bodies.
details
PML_HUMAN159162UncategorisedUncategorisedSumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies.
details
NFAC1_HUMAN701704BinaryPre‑translationalAlternative splicing removes the Sumoylation motif (SIM) of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), preventing the sumolyation of Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). Both the Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) exert a differential effect upon IL-2 expression. However, the longer isoform, Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), has a sumoylation motif and is therefore negatively regulated in a sumolyation-dependent manner.
details
NFAC1_HUMAN913916BinaryPre‑translationalAlternative splicing removes the Sumoylation motif (SIM) of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), preventing the sumolyation of Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1). Both the Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and Isoform A-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) exert a differential effect upon IL-2 expression. However, the longer isoform, Isoform C-alpha of Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), has a sumoylation motif and is therefore negatively regulated in a sumolyation-dependent manner.
details

MOD_SUMO_PHOS -
ESR2_HUMAN47BinaryPhysicochemical compatibilityThe GSK3-beta binding site at S12 in Estrogen receptor beta (ESR2) is primed by (most likely) RAC-alpha serine/threonine-protein kinase (AKT1). This enhances the binding of SUMO-conjugating enzyme UBC9 (UBE2I) at the adjacent Sumoylation site. This site is also primed at S6 (most likely) by AKT1. The addition of SUMO at K4 stabilises ESR2 as it prevents the ubiquitination at K4 (see switch details)
details
ESR2_HUMAN47BinaryPhysicochemical compatibilitySumoylation of K4 in Estrogen receptor beta (ESR2) is inhibited by ubiquitination K4. This destabilises ESR2 increasing its turnover (see also switch details)
details
           
Please send any suggestions/comments to: switches@elm.eu.org