Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
A-kinase anchor protein 1, mitochondrial | Dynamin-1 | Neurabin-1 (Rattus) |
Retinoblastoma-associated protein | Serine/threonine-protein kinase Nek2 |
Motif | Start | End | Switch Type | Switch Subtype | Switch Description | Information |
A-kinase anchor protein 1, mitochondrial - AKAP1 -  Homo sapiens | |||||||
DOC_PP1 | 151 | 158 | Binary | Pre‑translational | Alternative splicing removes the PP1-binding motif of A-kinase anchor protein 1, mitochondrial (AKAP1), abrogating binding to PP-1 subfamily. Isoform AKAP149 of A-kinase anchor protein 1, mitochondrial (AKAP1) may conceivably position PKA and PP1 in close proximity where they can reversibly modulate the phosphorylation of nuclear substrates such as NPP1, DNA-binding cAMP response elements, B-type lamins and inner nuclear membrane proteins LBR and lamina-associated polypeptides, which all harbor PKA phosphorylation sites. | ||
Dynamin-1 - DNM1 -  Homo sapiens | |||||||
DOC_PP2B_1 | 844 | 849 | Binary | Pre‑translational | Alternative splicing removes the PP2B-binding motif of Isoform 3 of Dynamin-1 (DNM1), abrogating binding to Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform (PPP3CA). This splice-specific motif in Isoform 3 of Dynamin-1 (DNM1) allows the docking of calcineurin phosphatase. The dephosphorylation of DNM1 by calcineurin, upon NGF stimulation, promotes the internalisation of the High affinity nerve growth factor receptor (NTRK1) (TrkA). | ||
Neurabin-1 - Ppp1r9a -  Rattus norvegicus | |||||||
DOC_PP1 | 455 | 461 | Binary | Physicochemical compatibility | Phosphorylation of S461 in the PP1-binding motif of Neurabin-1 (Ppp1r9a) by cAMP subfamily inhibits binding to the Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (Ppp1ca). Binding of Neurabin-1 (Ppp1r9a) inhibits activity of the phosphatase. | ||
Retinoblastoma-associated protein - RB1 -  Homo sapiens | |||||||
DOC_PP1 | 872 | 878 | Specificity | Competition | The docking sites for PP1 (e.g. Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PPP1CA)) and Cdk-Cyclins (e.g. Cyclin-A2 (CCNA2)) on Retinoblastoma-associated protein (RB1) overlap, which makes their binding to RB1 mutually exclusive. Hypophosphorylated RB1 blocks E2F-dependent transcription, while hyperphosphorylation inactivates RB1 as a repressor, thereby promoting cell cycle progression. | ||
Serine/threonine-protein kinase Nek2 - NEK2 -  Homo sapiens | |||||||
DOC_PP1 | 380 | 387 | Binary | Pre‑translational | Alternative splicing removes the PP1-docking motif of Serine/threonine-protein kinase Nek2 (NEK2), abrogating binding to Serine/threonine-protein phosphatase PP1-gamma catalytic subunit (PPP1CC). Isoform Nek2A of Serine/threonine-protein kinase Nek2 (NEK2) is localised at centrosomes and causes centrosome splitting. Isoform Nek2B of Serine/threonine-protein kinase Nek2 (NEK2) is expressed at a different point in the cell cycle and is required for assembly/maintenance of centrosomes. | ||
DOC_PP1 | 380 | 387 | Binary | Pre‑translational | Alternative splicing removes the PP1-docking motif of Serine/threonine-protein kinase Nek2 (NEK2), abrogating binding to Serine/threonine-protein phosphatase PP1-alpha catalytic subunit (PPP1CA). Isoform Nek2A of Serine/threonine-protein kinase Nek2 (NEK2) is localised at centrosomes and causes centrosome splitting. Isoform Nek2B of Serine/threonine-protein kinase Nek2 (NEK2) is expressed at a different point in the cell cycle and required for assembly/maintenance of centrosomes. |