About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:O14745 (8 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Beta-2 adrenergic receptorCatenin beta-1Cystic fibrosis transmembrane conductance regulator
H(+)/Cl(-) exchange transporter 3Na(+)/H(+) exchange regulatory cofactor NHE-RF1Platelet-derived growth factor receptor beta


MotifStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

Beta-2 adrenergic receptor - ADRB2 -  Homo sapiens
LIG_PDZ_Class_1408413BinaryPhysicochemical compatibilityPhosphorylation of S411 in the PDZ-binding motif of Beta-2 adrenergic receptor (ADRB2) by inhibits its interaction with the Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) protein.
details

Catenin beta-1 - CTNNB1 -  Homo sapiens
LIG_PDZ_Class_1776781BinaryAllosteryBinding of Ezrin (EZR) via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1), which results in relief of the intramolecular interaction with the PDZ binding ligand, thereby increasing the affinity of the PDZ domain for other ligands, including Catenin beta-1 (CTNNB1).
details
LIG_PDZ_Class_1776781SpecificityDomain hidingBinding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1).
details

Cystic fibrosis transmembrane conductance regulator - CFTR -  Homo sapiens
LIG_PDZ_Class_114751480SpecificityCompetitionThe PDZ domains of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) and SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) compete for the PDZ-binding motif of Cystic fibrosis transmembrane conductance regulator (CFTR). SLC9A3R1 positively regulates CFTR activity by recruiting a PKA-containing complex, while SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) negatively affects CFTR activity by recruiting PDE4D.
details
LIG_PDZ_Class_114751480SpecificityCompetitionThe PDZ domains of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) and SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) compete for the PDZ-binding motif of Cystic fibrosis transmembrane conductance regulator (CFTR). SLC9A3R1 positively regulates CFTR activity by recruiting a PKA-containing complex, while SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) negatively affects CFTR activity by recruiting PDE4D.
details

H(+)/Cl(-) exchange transporter 3 - CLCN3 -  Homo sapiens
LIG_PDZ_Class_1861866BinaryPre‑translationalAlternative splicing removes the PDZ-binding motif of Isoform ClC-3B of H(+)/Cl(-) exchange transporter 3 (CLCN3), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1). Isoform ClC-3B of H(+)/Cl(-) exchange transporter 3 (CLCN3) is expressed at the leading edge of membrane ruffles. The interaction of CLCN3 with SLC9A3R1 is important for localising outwardly rectifying chloride channels at the leading edge.
details

Na(+)/H(+) exchange regulatory cofactor NHE-RF1 - SLC9A3R1 -  Homo sapiens
LIG_PDZ_Class_1353358SpecificityDomain hidingBinding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1).
details

Platelet-derived growth factor receptor beta - PDGFRB -  Homo sapiens
LIG_PDZ_Class_111011106BinaryPhysicochemical compatibilityPhosphorylation of S1104 in the PDZ-binding motif of Platelet-derived growth factor receptor beta (PDGFRB) by Beta-adrenergic receptor kinase 1 (ADRBK1) inhibits binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1). Binding of Platelet-derived growth factor receptor beta (PDGFRB) to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) potentiates dimerisation and signalling of the receptor, while phosphorylation at S1104 desensitises the receptor.
details
           
Please send any suggestions/comments to: switches@elm.eu.org