Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
PIAS1_HUMAN | LIG_SUMO_SBM_1 | 457 | 461 | Phosphorylation of S466 and S467 and S468 in the SUMO-binding motif of E3 SUMO-protein ligase PIAS1 (PIAS1) by CK2 subfamily and CK2 subfamily and CK2 subfamily increases the strength of its interaction with Small ubiquitin-related modifier 1 (SUMO1). | |||
PIAS1_HUMAN | LIG_SUMO_SBM_1 | 457 | 461 | Acetylation of K33 in Small ubiquitin-related modifier 2 (SUMO2) inhibits binding to E3 SUMO-protein ligase PIAS1 (PIAS1). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. An additional interaction is also possible upon acetylation with the Bromodomain of p300 shown to bind the acetylated version of SUMO2. This does not occur with acetylated SUMO1. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. | |||
PIAS1_HUMAN | LIG_SUMO_SBM_1 | 457 | 461 | Acetylation of K37 in Small ubiquitin-related modifier 1 (SUMO1) inhibits binding to E3 SUMO-protein ligase PIAS1 (PIAS1). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. | |||
PIAS2_HUMAN | LIG_SUMO_SBM_1 | 467 | 471 | Acetylation of K33 in Small ubiquitin-related modifier 2 (SUMO2) inhibits binding to E3 SUMO-protein ligase PIAS2 (PIAS2). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. An additional interaction is also possible upon acetylation with the Bromodomain of p300 shown to bind the acetylated version of SUMO2. This does not occur with acetylated SUMO1. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. | |||
PIAS2_HUMAN | LIG_SUMO_SBM_1 | 467 | 471 | Acetylation of K37 in Small ubiquitin-related modifier 1 (SUMO1) inhibits binding to E3 SUMO-protein ligase PIAS2 (PIAS2). The acetylation counters SUMO-SIM-dependent transcriptional repression processes. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. | |||
DAXX_HUMAN | LIG_SUMO_SBM_1 | 733 | 740 | Acetylation of K37 in the SUMO1 inhibits binding to the Small ubiquitin-related modifier 1 (SUMO1) protein see switch details. SUMO-modified forms of Protein PML (PML) are essential for the recruitment of DAXX to PML nuclear bodies. The acetylated versions of SUMO1/2 failed to trigger recruitment of DAXX into the nuclear bodies. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. | |||
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
PML_HUMAN | LIG_SUMO_SBM_1 | 556 | 566 | Alternative splicing removes the Sumoylation interacting motif (SIM) of Protein PML (PML), abrogating binding to Small ubiquitin-related modifier 1 (SUMO1) in Isoform TRIM19epsilon of Protein PML (PML). Isoforms lacking the SIM were resistant to As2O3-induced PML degradation. | |||
Type: Cumulative Subtype: Rheostatic | |||||||
Rheostatic switches gradually alter the affinity of a motif for a single binding partner by addition of multiple PTMs that additively contribute to this modulation. Additional modifications can either strengthen or weaken an interaction. | |||||||
DAXX_HUMAN | LIG_SUMO_SBM_1 | 734 | 740 | Multisite phosphorylation of S737 and S739 in the SUMO-binding motif of Death domain-associated protein 6 (DAXX) by CK2 subfamily and CK2 subfamily increases the strength of the interaction with Small ubiquitin-related modifier 1 (SUMO1). | |||
Type: Uncategorised Subtype: Uncategorised | |||||||
Switches that have unique regulatory mechanisms. As more instances accumulate these switches may be worthy of a novel switch type | |||||||
DAXX_HUMAN | LIG_SUMO_SBM_1 | 733 | 740 | Sumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies. | |||
DAXX_HUMAN | LIG_SUMO_SBM_1 | 733 | 740 | Sumoylation of K160 induces binding to the Protein PML (PML) protein. SUMO-modified forms of PML are essential for the recruitment of Death domain-associated protein 6 (DAXX) to PML nuclear bodies. | |||
Type: Specificity Subtype: Altered binding specificity | |||||||
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity. | |||||||
DAXX_HUMAN | LIG_SUMO_SBM_1 | 733 | 740 | Acetylation of K33 in the SUMO2 inhibits binding to the Death domain-associated protein 6 (DAXX) protein see switch details. SUMO-modified forms of Protein PML (PML) are essential for the recruitment of Small ubiquitin-related modifier 2 (SUMO2) to PML nuclear bodies. The acetylated versions of SUMO1/2 failed to trigger recruitment of Small ubiquitin-related modifier 2 (SUMO2) into the nuclear bodies. An additional interaction is also possible upon acetylation with the Bromodomain of Histone acetyltransferase p300 (EP300) shown to bind the acetylated version of SUMO2. This does not occur with acetylated SUMO1. Acetylation is countered by Histone deacetylase family, HD type 1 subfamily. |