About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P53618 (9 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Binary Subtype: Pre‑translationalType: Specificity Subtype: Motif hiding


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Motif hiding
Motif hiding occurs when there is a large difference in intrinsic affinity of overlapping or adjacent motifs for their respective binding partners, or a large difference in the local abundance of these partners. Binding of an effector to one motif sterically masks the overlapping or adjacent motif, thereby precluding it from binding. Binding of the masking molecule can be PTM-dependent or -independent.
ADA22_HUMANTRG_ER_diArg_1829
851
831
854
Phosphorylation-induced binding of dimeric 14-3-3 protein beta/alpha (YWHAB) to Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) blocks ER retention motifs in Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) and regulates transport of this protein to the membrane.
details
GPR15_HUMANTRG_ER_diArg_1352354Phosphorylation-induced binding of 14-3-3 protein beta/alpha (YWHAB) promotes cell surface expression of G-protein coupled receptor 15 (GPR15) by releasing the receptor from the ER retrieval/retention pathway that is mediated by the interaction of its ER retention motif with Coatomer subunit beta (COPB1).
details
HG2A_HUMANTRG_ER_diArg_135The basic ER retention motif of HLA class II histocompatibility antigen gamma chain (CD74) is blocked from binding to Coatomer subunit beta (COPB1) by phosphorylation-induced binding of 14-3-3 protein beta/alpha (YWHAB), regulating its release from the ER and trafficking to the plasma membrane.
details
GABR1_HUMANTRG_ER_diArg_1923926Interaction of the GABA receptor R2 subunit (Gamma-aminobutyric acid type B receptor subunit 2 (GABBR2)) with the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)) via coiled-coil forming domains masks the ER retention motif in the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)), thereby promoting surface expression of fully assembled GABA receptors.
details
NMDZ1_HUMANTRG_ER_diArg_1893895Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number.
details
NMDZ1_HUMANTRG_ER_diArg_1893895Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number.
details
NMDZ1_HUMANTRG_ER_diArg_1893895Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number.
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
NMDZ1_HUMANTRG_ER_diArg_1893895Phosphorylation of S896 adjacent to the ER retention motif of Glutamate [NMDA] receptor subunit zeta-1 (GRIN1) by PKC subfamily (and possibly S897 by PKA) inactivates the motif and promotes delivery of the receptor to the plasma membrane. Optimal trafficking upon dual phosphorylation of S896 and S897 allows regulation of receptor trafficking by coordinated PKA and PKC signaling.
details

Type: Binary Subtype: Pre‑translational
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif.
GRIK1_RATTRG_ER_diArg_2937941Alternative splicing removes the di-arginine ER-retention motif of Glutamate receptor, ionotropic kainate 1 (Grik1), abrogating binding to Coatomer subunit beta (COPB1).
details
           
Please send any suggestions/comments to: switches@elm.eu.org