Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Type: Binary Subtype: Physicochemical compatibility | Type: Binary Subtype: Pre‑translational | Type: Specificity Subtype: Motif hiding |
Protein | Motif | Start | End | Switch description | Information |
Type: Specificity Subtype: Motif hiding | |||||||
Motif hiding occurs when there is a large difference in intrinsic affinity of overlapping or adjacent motifs for their respective binding partners, or a large difference in the local abundance of these partners. Binding of an effector to one motif sterically masks the overlapping or adjacent motif, thereby precluding it from binding. Binding of the masking molecule can be PTM-dependent or -independent. | |||||||
ADA22_HUMAN | TRG_ER_diArg_1 | 829 851 | 831 854 | Phosphorylation-induced binding of dimeric 14-3-3 protein beta/alpha (YWHAB) to Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) blocks ER retention motifs in Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) and regulates transport of this protein to the membrane. | |||
GPR15_HUMAN | TRG_ER_diArg_1 | 352 | 354 | Phosphorylation-induced binding of 14-3-3 protein beta/alpha (YWHAB) promotes cell surface expression of G-protein coupled receptor 15 (GPR15) by releasing the receptor from the ER retrieval/retention pathway that is mediated by the interaction of its ER retention motif with Coatomer subunit beta (COPB1). | |||
HG2A_HUMAN | TRG_ER_diArg_1 | 3 | 5 | The basic ER retention motif of HLA class II histocompatibility antigen gamma chain (CD74) is blocked from binding to Coatomer subunit beta (COPB1) by phosphorylation-induced binding of 14-3-3 protein beta/alpha (YWHAB), regulating its release from the ER and trafficking to the plasma membrane. | |||
GABR1_HUMAN | TRG_ER_diArg_1 | 923 | 926 | Interaction of the GABA receptor R2 subunit (Gamma-aminobutyric acid type B receptor subunit 2 (GABBR2)) with the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)) via coiled-coil forming domains masks the ER retention motif in the R1 subunit (Gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)), thereby promoting surface expression of fully assembled GABA receptors. | |||
NMDZ1_HUMAN | TRG_ER_diArg_1 | 893 | 895 | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | |||
NMDZ1_HUMAN | TRG_ER_diArg_1 | 893 | 895 | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | |||
NMDZ1_HUMAN | TRG_ER_diArg_1 | 893 | 895 | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | |||
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
NMDZ1_HUMAN | TRG_ER_diArg_1 | 893 | 895 | Phosphorylation of S896 adjacent to the ER retention motif of Glutamate [NMDA] receptor subunit zeta-1 (GRIN1) by PKC subfamily (and possibly S897 by PKA) inactivates the motif and promotes delivery of the receptor to the plasma membrane. Optimal trafficking upon dual phosphorylation of S896 and S897 allows regulation of receptor trafficking by coordinated PKA and PKC signaling. | |||
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
GRIK1_RAT | TRG_ER_diArg_2 | 937 | 941 | Alternative splicing removes the di-arginine ER-retention motif of Glutamate receptor, ionotropic kainate 1 (Grik1), abrogating binding to Coatomer subunit beta (COPB1). |