Domain hiding |   Altered binding specificity |   Motif hiding |   Composite binding site formation |
  Uncategorised |   Rheostatic |   Allostery |   Avidity-sensing |
  Physicochemical compatibility |   Pre-translational |   Competition |
Type: Binary Subtype: Physicochemical compatibility | Type: Binary Subtype: Pre‑translational | Type: Specificity Subtype: Altered binding specificity |
Protein | Motif | Start | End | Switch description | Information |
Type: Binary Subtype: Physicochemical compatibility | |||||||
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction. | |||||||
SRC_HUMAN | LIG_SH2_SRC | 530 | 533 | Phosphorylation of Y530 in the SH2-binding motif of Proto-oncogene tyrosine-protein kinase Src (SRC) induces an intramolecular interaction with the SH2 domain of Proto-oncogene tyrosine-protein kinase Src (SRC) resulting in inhibition of its activity and preventing intermolecular interactions of its SH2 domain. | |||
DAB1_MOUSE | LIG_SH2_SRC | 198 | 201 | Phosphorylation of Y198 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). | |||
EGFR_HUMAN | LIG_SH2_SRC | 1016 | 1019 | Phosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1). | |||
EGFR_HUMAN | LIG_SH2_SRC | 1125 | 1128 | Phosphorylation of Y1125 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Adapter molecule crk (CRK). | |||
EGFR_HUMAN | LIG_SH2_SRC | 1016 | 1019 | Phosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Cytoplasmic protein NCK1 (NCK1). | |||
FAK1_HUMAN | LIG_SH2_SRC | 397 | 400 | Phosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). | |||
Type: Binary Subtype: Pre‑translational | |||||||
Pre-translational mechanisms such as alternative splicing, alternative promoter-usage and/or RNA editing result in inclusion or removal of exons that contain an entire or partial motif. | |||||||
DAB1_MOUSE | LIG_SH2_SRC | 198 | 201 | Alternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). Splice variants 2 and 3 (only containing one of the YQxI motifs, i.e. Y185 and Y198) exhibit decreased tyrosine phosphorylation, suggesting both motifs are required for full activation of Dab1. Dab1 is likely to recruit Neuronal proto-oncogene tyrosine-protein kinase Src (Src) via these two YQxI motifs, which subsequently phosphorylates adjacent YxVP motifs (here). This was also suggested for Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1) and Suppressor of cytokine signaling 2 (Socs2). Gao et al. (2012) (here) suggests that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains allows a fine-tuning role for Dab1 splicing in the intricate series of events that underlie neuronal migration (See also Katyal & Godbout (2004) (here) and Gao et al. (2010) (here)). | |||
Type: Specificity Subtype: Altered binding specificity | |||||||
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity. | |||||||
DAG1_HUMAN | LIG_SH2_SRC | 892 | 895 | Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by Src kinase (Proto-oncogene tyrosine-protein kinase Src (SRC)) switches the specificity of DAG1 from the WW domain containing cytoskeletal linker Dystrophin (DMD) to the SH2 domain containing Tyrosine-protein kinase Fyn (FYN). | |||
DAG1_HUMAN | LIG_SH2_SRC | 892 | 895 | Adhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by c-Src (SRC) switches the specificity of DAG1 from WW domain containing proteins like Utrophin (UTRN) to SH2 domain containing proteins like Tyrosine-protein kinase CSK (CSK). |