About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: ELM:LIG_SH2_SRC (9 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Disabled homolog 1 (Mus)DystroglycanEpidermal growth factor receptor
Focal adhesion kinase 1Proto-oncogene tyrosine-protein kinase Src


MotifStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

Disabled homolog 1 - Dab1 -  Mus musculus
LIG_SH2_SRC198201BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). Splice variants 2 and 3 (only containing one of the YQxI motifs, i.e. Y185 and Y198) exhibit decreased tyrosine phosphorylation, suggesting both motifs are required for full activation of Dab1. Dab1 is likely to recruit Neuronal proto-oncogene tyrosine-protein kinase Src (Src) via these two YQxI motifs, which subsequently phosphorylates adjacent YxVP motifs (here). This was also suggested for Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1) and Suppressor of cytokine signaling 2 (Socs2). Gao et al. (2012) (here) suggests that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains allows a fine-tuning role for Dab1 splicing in the intricate series of events that underlie neuronal migration (See also Katyal & Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_SRC198201BinaryPhysicochemical compatibilityPhosphorylation of Y198 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details

Dystroglycan - DAG1 -  Homo sapiens
LIG_SH2_SRC892895SpecificityAltered binding specificityAdhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by Src kinase (Proto-oncogene tyrosine-protein kinase Src (SRC)) switches the specificity of DAG1 from the WW domain containing cytoskeletal linker Dystrophin (DMD) to the SH2 domain containing Tyrosine-protein kinase Fyn (FYN).
details
LIG_SH2_SRC892895SpecificityAltered binding specificityAdhesion-dependent phosphorylation of Y892 in Dystroglycan (DAG1) by c-Src (SRC) switches the specificity of DAG1 from WW domain containing proteins like Utrophin (UTRN) to SH2 domain containing proteins like Tyrosine-protein kinase CSK (CSK).
details

Epidermal growth factor receptor - EGFR -  Homo sapiens
LIG_SH2_SRC10161019BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1).
details
LIG_SH2_SRC11251128BinaryPhysicochemical compatibilityPhosphorylation of Y1125 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Adapter molecule crk (CRK).
details
LIG_SH2_SRC10161019BinaryPhysicochemical compatibilityPhosphorylation of Y1016 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to Cytoplasmic protein NCK1 (NCK1).
details

Focal adhesion kinase 1 - PTK2 -  Homo sapiens
LIG_SH2_SRC397400BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details

Proto-oncogene tyrosine-protein kinase Src - SRC -  Homo sapiens
LIG_SH2_SRC530533BinaryPhysicochemical compatibilityPhosphorylation of Y530 in the SH2-binding motif of Proto-oncogene tyrosine-protein kinase Src (SRC) induces an intramolecular interaction with the SH2 domain of Proto-oncogene tyrosine-protein kinase Src (SRC) resulting in inhibition of its activity and preventing intermolecular interactions of its SH2 domain.
details
           
Please send any suggestions/comments to: switches@elm.eu.org