About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway         Hide inferred   Group Index    Colouring Info              Filtered: ELM:LIG_SH2_IA (36 hits) x


x  Coloured by: Modifier evidence source
          Curated          inferred


x  Index
Ephrin type-A receptor 3Focal adhesion kinase 1Hepatocyte growth factor receptor
Neuronal proto-oncogene tyrosine-protein kinase Src (Mus)Proto-oncogene tyrosine-protein kinase SrcTyrosine-protein kinase ABL1
Tyrosine-protein kinase FgrTyrosine-protein kinase Lck


MotifProteinStartEndSwitch TypeSwitch SubtypeSwitch descriptionInformationEvidence

Ephrin type-A receptor 3 - EPHA3 -  Homo sapiens
LIG_SH2_IA EPHA3_HUMAN597606BinaryPhysicochemical compatibilityPhosphorylation of Y602 in the SH2-binding motif of Ephrin type-A receptor 3 (EPHA3) induces binding to the Cytoplasmic protein NCK1 (NCK1) protein.
details
Inferred

Focal adhesion kinase 1 - PTK2 -  Homo sapiens
LIG_SH2_IA FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred

Hepatocyte growth factor receptor - MET -  Homo sapiens
LIG_SH2_IA FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred

Neuronal proto-oncogene tyrosine-protein kinase Src - SRC -  Mus musculus
LIG_SH2_IA DAB1_MOUSE212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Curated
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Curated

Proto-oncogene tyrosine-protein kinase Src - SRC -  Homo sapiens
LIG_SH2_IA FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA DAB1_MOUSE212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA DAB1_MOUSE212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
Inferred

Tyrosine-protein kinase ABL1 - ABL1 -  Homo sapiens
LIG_SH2_IA DAB1_MOUSE212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
Inferred
LIG_SH2_IA DAB1_MOUSE232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
Inferred

Tyrosine-protein kinase Fgr - FGR -  Homo sapiens
LIG_SH2_IA FAK1_HUMAN389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
Inferred

Tyrosine-protein kinase Lck - LCK -  Homo sapiens
LIG_SH2_IA IL2RB_HUMAN409428BinaryPhysicochemical compatibilityPhosphorylation of Y418 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Tyrosine-protein kinase Lck (LCK) protein.
details
Inferred
LIG_SH2_IA IL2RB_HUMAN409428BinaryPhysicochemical compatibilityPhosphorylation of Y418 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Tyrosine-protein kinase Lck (LCK) protein.
details
Inferred
           
Please send any suggestions/comments to: switches@elm.eu.org