About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: ELM:LIG_SH2_IA (17 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
BDNF/NT-3 growth factors receptorDermcidinDisabled homolog 1 (Mus)
Ephrin type-A receptor 3Focal adhesion kinase 1Guanine nucleotide-binding protein subunit beta-2-like 1 (Rattus)
High affinity immunoglobulin epsilon receptor subunit gammaInterleukin-2 receptor subunit betaLymphocyte cytosolic protein 2 (Mus)


MotifStartEndSwitch TypeSwitch SubtypeSwitch DescriptionInformation

BDNF/NT-3 growth factors receptor - NTRK2 -  Homo sapiens
LIG_SH2_IA714730BinaryPhysicochemical compatibilityPhosphorylation of Y727 in the SH2-binding motif of BDNF/NT-3 growth factors receptor (NTRK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details

Dermcidin - DCD -  Homo sapiens
LIG_SH2_IA1525BinaryPhysicochemical compatibilityPhosphorylation of Y20 in the SH2-binding motif of Dermcidin (DCD) induces binding to the Cytoplasmic protein NCK1 (NCK1) protein.
details

Disabled homolog 1 - Dab1 -  Mus musculus
LIG_SH2_IA212228BinaryPhysicochemical compatibilityPhosphorylation of Y220 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details
LIG_SH2_IA220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). NCK2-beta has a clear preference for splice variant 2 (with the YQYI motif) over splice variant 3 (with the YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_IA232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Cytoplasmic protein NCK2 (NCK2). The NCK2-beta has a clear preference for splice variant 2 (with YQYI motif) over splice variant 3 (with YQTI motif). The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_IA220223BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_IA232235BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Adapter molecule crk (Crk). Both Adapter molecule crk (Crk) and Crk-like protein (Crkl) bind equally well to variants 2 and 3. The authors theorise that since Adapter molecule crk (Crk) is directly linked to the C3G-Rap1 pathway, and NCK2-beta is linked to the Breast cancer anti-estrogen resistance protein 1 (Bcar1) (p130Cas) pathway, it is likely that isoforms 2 and 3 connect to different downstream cascades. It was suggested that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains implies a fine-tuning role of Dab1 splicing in the intricate series of events that underlie neuronal migration (Gao et al. (2012) (here)) (See also Katyal and Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_IA185188BinaryPre‑translationalAlternative splicing removes the SH2-binding motif of Disabled homolog 1 (Dab1), abrogating binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src). Splice variants 2 and 3 (only containing one of the YQxI motifs, i.e. Y185 and Y198) exhibit decreased tyrosine phosphorylation, suggesting both motifs are required for full activation of Dab1. Dab1 is likely to recruit Neuronal proto-oncogene tyrosine-protein kinase Src (Src) via these two YQxI motifs, which subsequently phosphorylates adjacent YxVP motifs (here). This was also suggested for Phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1) and Suppressor of cytokine signaling 2 (Socs2). Gao et al. (2012) (here) suggests that the ability of different Dab1 isoforms to recruit distinct sets of SH2 domains allows a fine-tuning role for Dab1 splicing in the intricate series of events that underlie neuronal migration (See also Katyal & Godbout (2004) (here) and Gao et al. (2010) (here)).
details
LIG_SH2_IA232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Cytoplasmic protein NCK2 (NCK2).
details
LIG_SH2_IA232235BinaryPhysicochemical compatibilityPhosphorylation of Y232 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Adapter molecule crk (Crk).
details
LIG_SH2_IA185188BinaryPhysicochemical compatibilityPhosphorylation of Y185 in the SH2-binding motif of Disabled homolog 1 (Dab1) induces binding to Neuronal proto-oncogene tyrosine-protein kinase Src (Src).
details

Ephrin type-A receptor 3 - EPHA3 -  Homo sapiens
LIG_SH2_IA597606BinaryPhysicochemical compatibilityPhosphorylation of Y602 in the SH2-binding motif of Ephrin type-A receptor 3 (EPHA3) induces binding to the Cytoplasmic protein NCK1 (NCK1) protein.
details

Focal adhesion kinase 1 - PTK2 -  Homo sapiens
LIG_SH2_IA389405BinaryPhysicochemical compatibilityPhosphorylation of Y397 in the SH2-binding motif of Focal adhesion kinase 1 (PTK2) induces binding to the Cytoplasmic protein NCK2 (NCK2) protein.
details

Guanine nucleotide-binding protein subunit beta-2-like 1 - Gnb2l1 -  Rattus norvegicus
LIG_SH2_IA241250BinaryPhysicochemical compatibilityPhosphorylation of Y246 in the SH2-binding motif of Guanine nucleotide-binding protein subunit beta-2-like 1 (Gnb2l1) induces binding to the Proto-oncogene tyrosine-protein kinase Src (SRC) protein.
details

High affinity immunoglobulin epsilon receptor subunit gamma - FCER1G -  Homo sapiens
LIG_SH2_IA7579BinaryPhysicochemical compatibilityPhosphorylation of Y76 in the SH2-binding motif of High affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) induces binding to the Tyrosine-protein kinase SYK (SYK) protein.
details

Interleukin-2 receptor subunit beta - IL2RB -  Homo sapiens
LIG_SH2_IA409428BinaryPhysicochemical compatibilityPhosphorylation of Y418 in the SH2-binding motif of Interleukin-2 receptor subunit beta (IL2RB) induces binding to the Tyrosine-protein kinase Lck (LCK) protein.
details

Lymphocyte cytosolic protein 2 - Lcp2 -  Mus musculus
LIG_SH2_IA143148BinaryPhysicochemical compatibilityPhosphorylation of Y145 in the SH2-binding motif of Lymphocyte cytosolic protein 2 (Lcp2) induces binding to the Tyrosine-protein kinase ITK/TSK (Itk) protein.
details
           
Please send any suggestions/comments to: switches@elm.eu.org