About Help Definitions Submit Search Analyse Browse Home


Group by :Switch typeMotif classProteinEnzymePathway            Group Index    Colouring Info              Filtered: UNIPROT:P62993 (15 hits) x


x  Coloured by switch type.
  Domain hiding  Altered binding specificity  Motif hiding  Composite binding site formation
  Uncategorised  Rheostatic  Allostery  Avidity-sensing
  Physicochemical compatibility  Pre-translational  Competition

x  Index
Type: Binary Subtype: Physicochemical compatibilityType: Cumulative Subtype: RheostaticType: Specificity Subtype: Altered binding specificity
Type: Specificity Subtype: Competition


ProteinMotifStartEndSwitch descriptionInformation

Type: Specificity Subtype: Competition
Competitive binding of multiple binding partners to overlapping or adjacent, mutually exclusive interaction interfaces depends on local target protein abundance, which can be regulated by changing the expression level or subcellular localisation of the competitors, or by scaffolding.
DAG1_HUMANLIG_WW_1889892The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_SH3_3888894The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_WW_1889892The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details
DAG1_HUMANLIG_SH3_3888894The WW-binding motif for Dystrophin (DMD) and the SH3-binding motif for Growth factor receptor-bound protein 2 (GRB2) on Dystroglycan (DAG1) overlap, making their interactions mutually exclusive and competitive.
details

Type: Binary Subtype: Physicochemical compatibility
PTM of a residue in a motif or in its flanking regions alters the physicochemical and/or structural compatibility of the motif with its binding partner. This can either induce or enhance an interaction, or result in inhibition or even abrogation of an interaction.
A9UF02_HUMANLIG_SH2_IC174180Phosphorylation of Y177 in the SH2-binding motif of BCR/ABL fusion induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
EGFR_HUMANLIG_SH2_IC10921100Phosphorylation of Y1092 in the SH2-binding motif of Epidermal growth factor receptor (EGFR) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
MET_HUMANLIG_SH2_IC13511360Phosphorylation of Y1356 in the SH2-binding motif of Hepatocyte growth factor receptor (MET) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
SHC1_HUMANLIG_SH2_IC423435Phosphorylation of Y427 in the SH2-binding motif of SHC-transforming protein 1 (SHC1) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMANLIG_SH2_IC191200Phosphorylation of Y196 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMANLIG_SH2_IC301310Phosphorylation of Y306 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMANLIG_SH2_IC345355Phosphorylation of Y349 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
FRS2_HUMANLIG_SH2_IC385395Phosphorylation of Y392 in the SH2-binding motif of Fibroblast growth factor receptor substrate 2 (FRS2) induces binding to the Growth factor receptor-bound protein 2 (GRB2) protein.
details
ERBB3_HUMANLIG_SH2_GRB212621265Phosphorylation of Y1262 in the SH2-binding motif of Receptor tyrosine-protein kinase erbB-3 (ERBB3) induces binding to Growth factor receptor-bound protein 2 (GRB2).
details

Type: Cumulative Subtype: Rheostatic
Rheostatic switches gradually alter the affinity of a motif for a single binding partner by addition of multiple PTMs that additively contribute to this modulation. Additional modifications can either strengthen or weaken an interaction.
A4_HUMANLIG_SH2_GRB2757760While phosphorylation of Y757 in the SH2-binding motif of Amyloid beta A4 protein (APP) induces binding to Growth factor receptor-bound protein 2 (GRB2), additional phosphorylation of T743 further increases the strength of the interaction.
details

Type: Specificity Subtype: Altered binding specificity
The balance of the competition for overlapping or adjacent, mutually exclusive interaction interfaces is tipped in favor of one of the interactors by PTM-dependent modulation of the intrinsic affinity of a binding region. Multiple, successive PTMs allow sequential switching of different binding partners in an ordered manner by step-wise alteration of binding specificity.
A4_HUMANLIG_SH2_GRB2757760Phosphorylation of Y757 in APP (Amyloid beta A4 protein (APP)) switches its specificity from PTB domain containing proteins, like Amyloid beta A4 precursor protein-binding family B member 1 (APBB1), which is involved in trafficking and processing of APP, to SH2 domain containing proteins, such as Growth factor receptor-bound protein 2 (GRB2).
details
           
Please send any suggestions/comments to: switches@elm.eu.org