LIG_PDZ_Class_1 - The C-terminal class 1 PDZ-binding motif is classically represented by a pattern like (ST)X(VIL)* |
CCG2_MOUSE | 318 | 323 | Binary | Physicochemical compatibility | Phosphorylation of T321 in the PDZ-binding motif of Voltage-dependent calcium channel gamma-2 subunit (Cacng2) by cAMP subfamily prevents binding to the PDZ domain of Disks large homolog 4 (Dlg4), an interaction involved in regulating synaptic targeting of AMPA-selective glutamate receptors. | details |
IRK4_HUMAN | 440 | 445 | Binary | Physicochemical compatibility | Phosphorylation of S443 in the PDZ-binding motif of Inward rectifier potassium channel 4 (KCNJ4) by inhibits its interaction with the Disks large homolog 4 (DLG4) protein. | details |
ADRB2_HUMAN | 408 | 413 | Binary | Physicochemical compatibility | Phosphorylation of S411 in the PDZ-binding motif of Beta-2 adrenergic receptor (ADRB2) by inhibits its interaction with the Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) protein. | details |
BCR_HUMAN | 1266 | 1271 | Binary | Physicochemical compatibility | Phosphorylation of T1269 in the PDZ-binding motif of Breakpoint cluster region protein (BCR) inhibits its interaction with the Afadin (MLLT4) protein. | details |
CTNB1_HUMAN | 776 | 781 | Binary | Allostery | Binding of Ezrin (EZR) via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1), which results in relief of the intramolecular interaction with the PDZ binding ligand, thereby increasing the affinity of the PDZ domain for other ligands, including Catenin beta-1 (CTNNB1). | details |
GRASP_RAT | 389 | 394 | Specificity | Motif hiding | Binding of the PDZ-binding motif of General receptor for phosphoinositides 1-associated scaffold protein (Grasp) (Tamalin) to the Tamalin Grasp PDZ domain locks this protein in an auto-inhibited conformation. Binding of the PDZ-binding motif of Metabotropic glutamate receptor 5 (Grm5) to the Tamalin GraspPDZ domain results in disruption of the weaker intramolecular Tamalin (Grasp) interactions. The PDZ-binding motif of Tamalin (General receptor for phosphoinositides 1-associated scaffold protein (Grasp)) becomes available to interact with the PDZ domain of Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (Magi2) (S-SCAM), which functions as a receptor for kinesin motor proteins. See also switch details. | details |
GRASP_RAT | 389 | 394 | Specificity | Motif hiding | Binding of the PDZ-binding motif of General receptor for phosphoinositides 1-associated scaffold protein (Grasp) (Tamalin) to the Tamalin Grasp PDZ domain locks this protein in an auto-inhibited conformation. Binding of the PDZ-binding motif of Metabotropic glutamate receptor 5 (Grm5) to the Tamalin GraspPDZ domain results in disruption of the weaker intramolecular Tamalin (Grasp) interactions. The PDZ-binding motif of Tamalin (General receptor for phosphoinositides 1-associated scaffold protein (Grasp)) becomes available to interact with the PDZ domain of Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (Magi2) (S-SCAM), which functions as a receptor for kinesin motor proteins. See also switch details. | details |
NHRF1_HUMAN | 353 | 358 | Specificity | Domain hiding | Binding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1). | details |
CTNB1_HUMAN | 776 | 781 | Specificity | Domain hiding | Binding of Ezrin via its FERM domain to the EB domain of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) results in allosteric coupling to the second PDZ domain of SLC9A3R1. This relieves the intramolecular interaction with the SLC9A3R1 PDZ-binding ligand and increases the affinity of the PDZ domain for other ligands including Catenin beta-1 (CTNNB1). | details |
GRM5_RAT | 1198 | 1203 | Specificity | Domain hiding | Binding of the PDZ-binding motif of General receptor for phosphoinositides 1-associated scaffold protein (Grasp) (Tamalin) to the Tamalin (Grasp) PDZ domain locks this protein in an auto-inhibited conformation. Binding of the PDZ-binding motif of Metabotropic glutamate receptor 5 (Grm5) to the Tamalin (Grasp) PDZ domain results in disruption of the weaker intramolecular Tamalin (Grasp) interactions. The PDZ-binding motif of Tamalin (Grasp) becomes available to interact with the PDZ domain of Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (Magi2) (S-SCAM), which functions as a receptor for kinesin motor proteins. See also switch details. | details |
GRASP_RAT | 389 | 394 | Specificity | Domain hiding | Binding of the PDZ-binding motif of General receptor for phosphoinositides 1-associated scaffold protein (Grasp) (Tamalin) to the Tamalin (Grasp) PDZ domain locks this protein in an auto-inhibited conformation. Binding of the PDZ-binding motif of Metabotropic glutamate receptor 5 (Grm5) to the Tamalin (Grasp) PDZ domain results in disruption of the weaker intramolecular Tamalin (Grasp) interactions. The PDZ-binding motif of Tamalin (Grasp) becomes available to interact with the PDZ domain of Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (Magi2) (S-SCAM), which functions as a receptor for kinesin motor proteins. See also switch details. | details |
CFTR_HUMAN | 1475 | 1480 | Specificity | Competition | The PDZ domains of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) and SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) compete for the PDZ-binding motif of Cystic fibrosis transmembrane conductance regulator (CFTR). SLC9A3R1 positively regulates CFTR activity by recruiting a PKA-containing complex, while SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) negatively affects CFTR activity by recruiting PDE4D. | details |
CFTR_HUMAN | 1475 | 1480 | Specificity | Competition | The PDZ domains of Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) and SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) compete for the PDZ-binding motif of Cystic fibrosis transmembrane conductance regulator (CFTR). SLC9A3R1 positively regulates CFTR activity by recruiting a PKA-containing complex, while SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) negatively affects CFTR activity by recruiting PDE4D. | details |
ADA22_HUMAN | 901 | 906 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22), abrogating binding to Disks large homolog 4 (DLG4). The motif-containing Isoform Epsilon of Disintegrin and metalloproteinase domain-containing protein 22 (ADAM22) forms part of a complex containing Leucine-rich glioma-inactivated protein 1 (LGI1), AMPA-R (e.g. Glutamate receptor 1 (GRIA1)) and AMPA-R regulatory proteins (e.g. Voltage-dependent calcium channel gamma-2 subunit (CACNG2)), and is closely associated with epilepsy. | details |
AT2B2_HUMAN | 1238 | 1243 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 2 (ATP2B2), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (SLC9A3R2), altering the location of this Ca2+ pump. Despite the similarity in C-terminal between the 'b' splice variants of Plasma membrane calcium-transporting ATPase 4 (ATP2B4) (-ETSV) and Plasma membrane calcium-transporting ATPase 2 (ATP2B2) (-ETSL), 'b' splice variants of ATP2B4 did not interact with either of the NHERFs whereas PMCA2b selectively preferred Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (SLC9A3R2) over Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1). NHERFs have been previously implicated in the targeting, retention and regulation of membrane proteins including the β2-adrenergic receptor, cystic fibrosis transmembrane conductance regulator, and Trp4 Ca2+channel. This study suggests Plasma membrane calcium-transporting ATPase 2 (ATP2B2) may be under similar regulation. | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Nitric oxide synthase, brain (NOS1). PMCA4b acts as a negative regulator of Nitric oxide synthase, brain (NOS1), reducing production of nitric oxide in heart tissue. This negative regulation was not dependent on a conformational change due to binding of the PDZ ligand, but on Ca2+ depletion in close proximity of the enzyme. Nitric oxide production by NOS1 is known to be important in the regulation of excitation-contraction (EC) coupling and subsequently contractility. | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Disks large homolog 3 (DLG3). Disks large homolog 3 (DLG3) did not bind to 'b' isoform of PMCA2. There is therefore an interaction selectivity between 'b' isoforms of ATP2B4 and DLG3 as opposed to the promiscuity of 'b' isoforms of ATP2B2 and ATP2B4 in interacting with other SAPs. Same study DLG4, DLG2 and DLG1 shown to bind to PDZ-binding motifs in 'b' isoforms of ATP2B4 and ATP2B2. | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Disks large homolog 1 (DLG1). A much lower affinity was recorded for the third PDZ domain of DLG1 (in in the micromolar range (KD = 1.2 microM) compared to nanomolar affinity (KD = 1.6 nM)). PMCA4b and DLG1 are co-expressed in kidney and intestinal epithelial cells as well as in several areas of the brain. Should be noted that the 'b' isoforms of Plasma membrane calcium-transporting ATPase 2 (ATP2B2) bind much more weakly to all PDZ domains of DLG1 | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Peripheral plasma membrane protein CASK (CASK). The PDZ domain-containing protein CASK and PMCA4b co-precipitate in kidney and brain. Similar to NOS1, binding to PMCA4b allows Ca2+ dependent regulation. Depletion of local Ca2+ by PMCA4b in close proximity to CASK may inhibit Ca2+/calmodulin binding. This can subsequently inhibit binding to T-box brain protein 1 (TBR1) and/or translocation of CASK or the CASK/TBR1 complex to the nucleus. | details |
5HT4R_MOUSE | 382 | 387 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4), abrogating binding to Sorting nexin-27 (Snx27). Snx27 is responsible for targeting of the Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4) to early endosomes. | details |
5HT4R_MOUSE | 382 | 387 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (Slc9a3r1). Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4) interacts specifically with a protein complex including Slc9a3r1 and Ezrin (Ezr) that might participate in its targeting to specialised subcellular regions, such as microvilli. | details |
IRK6_MOUSE | 420 | 425 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of G protein-activated inward rectifier potassium channel 2 (Kcnj6), abrogating binding to Sorting nexin-27 (Snx27). | details |
KIF1B_MOUSE | 1145 | 1150 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 3 of Kinesin-like protein KIF1B (Kif1b), abrogating binding to PDZ domain-containing protein GIPC1 (Gipc1). | details |
GRIK1_RAT | 900 | 905 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform Glur5-2 of Glutamate receptor ionotropic, kainate 1 (Grik1), abrogating binding to PRKCA-binding protein (Pick1). The ER-retention motif of Grik1 splice variants can be inhibited by PKC phosphorylation and association with a PDZ protein. It has also been shown that the PDZ domain-containing proteins Disks large homolog 4 (Dlg4) and Syntenin-1 (Sdcbp) are able to bind. | details |
GRIK1_RAT | 900 | 905 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Glutamate receptor, ionotropic kainate 1 (Grik1), abrogating binding to Glutamate receptor-interacting protein 1 (Grip1). The ER retention of Grik1 splice variants can be inhibited by PKC phosphorylation and association with a PDZ domain-containing protein. Also shown that the PDZ-binding containing proteins PSD95 and syntenin are able to bind. | details |
GUAD_HUMAN | 449 | 454 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Guanine deaminase (GDA) (Nedasin), abrogating binding to Disks large homolog 3 (DLG3). Isoform 1 of Guanine deaminase (GDA) (Nedasin S) is predominately expressed in neuronal tissues and binds PDZ domains. Isoform 3 of Guanine deaminase (GDA) (Nedasin V1), which is predominately expressed in non-neuronal tissues, does not bind PDZ domains. The presence of Nedasin S inhibits binding of NMDA receptors and K+ channels to PDZ domain-containing proteins such as members of the MAGUK family. This suggests that GDA might modulate the receptor clustering function of the PDZ domains of MAGUK family members, and this modulation is regulated by alternative splicing of GDA transcripts. | details |
NMDZ1_HUMAN | 917 | 922 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 4 of Glutamate [NMDA] receptor subunit zeta-1 (GRIN1), abrogating binding to Disks large homolog 4 (DLG4). Binding of the PDZ domain of DLG4 suppresses an ER-retention motif in GRIN1, promoting its cell surface expression in a splice variant-specific manner. | details |
NMDZ1_HUMAN | 917 | 922 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | details |
SYNJ2_RAT | 1288 | 1293 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 7.5kb of Synaptojanin-2 (Synj2), abrogating binding to Synaptojanin-2-binding protein (Synj2bp). Isoform 7.5kb of Synaptojanin-2 (Synj2) (Synaptojanin 2A) is recruited to mitochondria through the interaction with the PDZ domain of the mitochondrial outer membrane protein Synj2bp. | details |
CLCN3_HUMAN | 861 | 866 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform ClC-3B of H(+)/Cl(-) exchange transporter 3 (CLCN3), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1). Isoform ClC-3B of H(+)/Cl(-) exchange transporter 3 (CLCN3) is expressed at the leading edge of membrane ruffles. The interaction of CLCN3 with SLC9A3R1 is important for localising outwardly rectifying chloride channels at the leading edge. | details |
PKHG5_MOUSE | 1068 | 1073 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Pleckstrin homology domain-containing family G member 5 (Plekhg5), abrogating binding to PDZ domain-containing protein GIPC1 (Gipc1). The PDZ adaptor protein Gipc1 (Synectin) bound the longer splice variant, Isoform SYX1 of Pleckstrin homology domain-containing family G member 5 (Plekhg5) (Syx1), which was targeted to the plasma membrane in a Synectin-dependent manner. The shorter variant, Isoform SYX2 of Pleckstrin homology domain-containing family G member 5 (Plekhg5) (Syx2), was diffusely distributed in the cytoplasm. Expression of Syx1 augmented endothelial cell migration and tube formation, whereas Syx2 expression did not. Significant expression of Syx2 was only seen in brain tumour cells, which also exhibited high basal Transforming protein RhoA (Rhoa) activity. | details |
KALRN_RAT | 1649 | 1654 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform Kalirin-7 of Kalirin (Kalrn), abrogating binding to Disks large homolog 4 (Dlg4). Isoform Kalirin-7 of Kalirin (Kalrn) is the most prevalent isoform in the adult rat hippocampus where it locates to the postsynaptic density via an interaction with Dlg4 and regulates dendritic morphogenesis. | details |
PLCB1_HUMAN | 1211 | 1216 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (PLCB1), abrogating binding to Partitioning defective 3 homolog (PARD3). The G protein-activated PLCB1 can directly interact with cell polarity proteins Partitioning defective 3 homolog (PARD3) and Partitioning defective 6 homolog alpha (PARD6A) to form protein complexes in the cell, which potentially modulate G protein-activated PLCB1 activity in cell polarity formation and asymmetric cell division. | details |
PLCB1_MOUSE | 1211 | 1216 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (Plcb1), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (Slc9a3r1). Plcb1 does not bind to Slc9a3r2. | details |
BAIP2_HUMAN | 516 | 521 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform BAIAP2-alpha of Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2), abrogating binding to Disks large homolog 3 (DLG3). The SH3 domain of Isoform BAIAP2-alpha of Brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) also binds to SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), meaning it can link two prominent proteins of the postsynaptic NMDA-receptor complex, namely SHANK1 and DLG3. | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Disks large homolog 1 (DLG1). A much lower affinity was recorded for the third PDZ domain of DLG1 (in in the micromolar range (KD = 1.2 microM) compared to nanomolar affinity (KD = 1.6 nM)). PMCA4b and DLG1 are co-expressed in kidney and intestinal epithelial cells as well as in several areas of the brain. | details |
AT2B4_HUMAN | 1236 | 1241 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Plasma membrane calcium-transporting ATPase 4 (ATP2B4), abrogating binding to Disks large homolog 3 (DLG3). Disks large homolog 3 (DLG3) did not bind to 'b' isoform of PMCA2. There is therefore an interaction selectivity between 'b' isoforms of ATP2B4 and DLG3 as opposed to the promiscuity of 'b' isoforms of ATP2B2 and ATP2B4 in interacting with other SAPs. Same study DLG4, DLG2 and DLG1 shown to bind to PDZ-binding motifs in 'b' isoforms of ATP2B4 and ATP2B2. | details |
KALRN_RAT | 1649 | 1654 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform Kalirin-7 of Kalirin (Kalrn), abrogating binding to Disks large homolog 4 (Dlg4). Isoform Kalirin-7 of Kalirin (Kalrn) is the most prevalent isoform in the adult rat hippocampus where it locates to the postsynaptic density via an interaction with Dlg4 and regulates dendritic morphogenesis. | details |
KALRN_RAT | 1649 | 1654 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform Kalirin-7 of Kalirin (Kalrn), abrogating binding to Disks large homolog 4 (Dlg4). Isoform Kalirin-7 of Kalirin (Kalrn) is the most prevalent isoform in the adult rat hippocampus where it locates to the postsynaptic density via an interaction with Dlg4 and regulates dendritic morphogenesis. | details |
NMDZ1_HUMAN | 917 | 922 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 4 of Glutamate [NMDA] receptor subunit zeta-1 (GRIN1), abrogating binding to Disks large homolog 4 (DLG4). Binding of the PDZ domain of DLG4 suppresses an ER-retention motif in GRIN1, promoting its cell surface expression in a splice variant-specific manner. | details |
NMDZ1_HUMAN | 917 | 922 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | details |
NMDZ1_HUMAN | 917 | 922 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 4 of Glutamate [NMDA] receptor subunit zeta-1 (GRIN1), abrogating binding to Disks large homolog 4 (DLG4). Binding of the PDZ domain of DLG4 suppresses an ER-retention motif in GRIN1, promoting its cell surface expression in a splice variant-specific manner. | details |
NMDZ1_HUMAN | 917 | 922 | Specificity | Motif hiding | Binding of the PDZ domain of Disks large homolog 4 (DLG4) suppresses the ER-retention motif of Isoform 4 of Glutamate receptor subunit zeta-1 (GRIN1) in a splice variant-specific manner, thereby promoting cell surface expression of this particular isoform. This supports the hypothesis that local regulation of receptor exit from neuronal ER plays a role in modifying discrete synaptic receptor number. | details |
GUAD_HUMAN | 449 | 454 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Guanine deaminase (GDA) (Nedasin), abrogating binding to Disks large homolog 3 (DLG3). Isoform 1 of Guanine deaminase (GDA) (Nedasin S) is predominately expressed in neuronal tissues and binds PDZ domains. Isoform 3 of Guanine deaminase (GDA) (Nedasin V1), which is predominately expressed in non-neuronal tissues, does not bind PDZ domains. The presence of Nedasin S inhibits binding of NMDA receptors and K+ channels to PDZ domain-containing proteins such as members of the MAGUK family. This suggests that GDA might modulate the receptor clustering function of the PDZ domains of MAGUK family members, and this modulation is regulated by alternative splicing of GDA transcripts. | details |
5HT4R_MOUSE | 382 | 387 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4), abrogating binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (Slc9a3r1). Isoform 5-HT4(A) of 5-hydroxytryptamine receptor 4 (Htr4) interacts specifically with a protein complex including Slc9a3r1 and Ezrin (Ezr) that might participate in its targeting to specialised subcellular regions, such as microvilli. | details |
PGFRB_HUMAN | 1101 | 1106 | Binary | Physicochemical compatibility | Phosphorylation of S1104 in the PDZ-binding motif of Platelet-derived growth factor receptor beta (PDGFRB) by Beta-adrenergic receptor kinase 1 (ADRBK1) inhibits binding to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1). Binding of Platelet-derived growth factor receptor beta (PDGFRB) to Na(+)/H(+) exchange regulatory cofactor NHE-RF1 (SLC9A3R1) potentiates dimerisation and signalling of the receptor, while phosphorylation at S1104 desensitises the receptor. | details |
LIG_PDZ_Class_2 - The C-terminal class 2 PDZ-binding motif is classically represented by a pattern such as (VYF)X(VIL)* |
SDC1_HUMAN | 305 | 310 | Binary | Physicochemical compatibility | Phosphorylation of Y309 in the PDZ-binding motif of Syndecan-1 (SDC1) prevents binding to the PDZ domain of Syntenin-1 (SDCBP), an interaction involved in the formation of cellular protrusions. | details |
APBA1_HUMAN | 832 | 837 | Specificity | Domain hiding | An intramolecular interaction of the C-terminal PDZ binding motif of Amyloid beta A4 precursor protein-binding family A member 1 (APBA1) (also known as X11alpha/Mint1) with the PDZ domain tandem of APBA1 results in an auto-inhibited conformation of APBA1, where binding of ligands containing a PDZ binding motif such as Presenilin-1 (PSEN1) is blocked. Binding of these ligands might be regulated by phosphorylation of Y836 in the APBA1 PDZ-binding motif, as its mutation to glutamate releases autoinhibition and enhances the interaction of the APBA1 PDZ tandem with presenilin. | details |
PSN1_HUMAN | 462 | 467 | Specificity | Domain hiding | An intramolecular interaction of the C-terminal PDZ binding motif of Amyloid beta A4 precursor protein-binding family A member 1 (APBA1) (also known as X11alpha/Mint1) with the PDZ domain tandem of APBA1 results in an auto-inhibited conformation of APBA1, where binding of ligands containing a PDZ binding motif such as Presenilin-1 (PSEN1) is blocked. Binding of these ligands might be regulated by phosphorylation of Y836 in the APBA1 PDZ-binding motif, as its mutation to glutamate releases autoinhibition and enhances the interaction of the APBA1 PDZ tandem with presenilin. | details |
5HT4R_MOUSE | 368 | 371 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Isoform 5-HT4(E) of 5-hydroxytryptamine receptor 4 (Htr4), abrogating binding to InaD-like protein (Inadl). | details |
GRIA2_RAT | 878 | 883 | Binary | Pre‑translational | Alternative splicing removes the PDZ-binding motif of Glutamate receptor 2 (Gria2), abrogating binding to PRKCA-binding protein (Pick1). The presence of PDZ-binding motifs is also seen in the short isoforms of Gria3 (Isoform Flop of Glutamate receptor 3 (Gria3)) and Gria4 (Isoform 4C flop of Glutamate receptor 4 (Gria4)). PRKCA-binding protein (Pick1) recruits both Protein kinase C alpha type (Prkca) and Gria2 simultaneously, possibly allowing Pick1 to play a role in the selective targeting to and possible anchoring of GluRshort-containing AMPA receptors to intracellular membrane-associated Prkca. | details |